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Introduction

Even though machine learning (ML) isn't a new technology, improvements 

in techniques and algorithms over the past few years have brought it to the 

forefront of technology, making it possibly one of the most exciting and 

promising tool to solve complex problems.

In general, most production machine learning applications are 

developed using programming languages such as Python or R, by 

researchers, machine learning engineers and data scientist; however, 

in recent years, new tools have been built in the aim to make machine 

learning more accessible to a wider range of developers.

In this book, we will focus on TensorFlow.js, a multi-features JavaScript 

library developed by Google that empowers web developers to build ML- 

enabled applications in the browser or in Node.js.

You might be thinking: “Why would I read a book about machine 

learning in JavaScript if most ML-enabled applications use Python or R 

in production?”, or, “Why would I learn about machine learning if I am a 

web developer?”. These questions are valid, especially considering that 

machine learning is a very different discipline than web development. 

However, in the technology field, a part of our work is to keep up to date 

with what is going on, not necessarily becoming an expert at every new 

technology or tool, but at least have an idea of the possibilities and limits. 

In my opinion, this is why tools like TensorFlow.js are important. Having 

the possibility to explore a new topic without having to also learn another 

programming language breaks down the barrier considerably. Besides, 

considering how fast things are moving and how powerful these tools are 

13 becoming, we can imagine a future where “JavaScript machine learning 

engineer” would be a sought-after job title. After all, I would have never 

imagined “Futurist” would be one.
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All this to say that the aim of this book is to introduce machine learning 

in a more approachable way, to break down barriers and hopefully make 

you feel more comfortable with this technology. After reading, you should 

have a good understanding of the current features offered by machine 

learning frameworks in JavaScript. To do this, we’ll define some of the 

commonly used terms and concepts you will open come across, we’ll cover 

the basics of ML using TensorFlow.js, and we’ll build a variety of projects 

to understand what is currently possible as well as some of the pitfalls. By 

the end, you should be able to, not only understand the theory, but also 

build machine learning enabled web applications.

An important thing to note however, is that this book is not going to 

look into how different machine learning algorithms are being developed. 

We're not going to dive into their source code, but instead, learn to identify 

their use cases and how to implement them. This book is aimed at being 

an introduction for people who want to learn more about machine 

learning in a practical way, without getting too deep into advanced topics.

Finally, and more importantly, I wanted to make this book as engaging 

as possible, so the different projects you will build involve various inputs 

such as images, the video from your webcam feed, the audio from your 

computer’s microphone, text data you can replace, and even motion data!

Machine learning can be fun so, if this sounds interesting to you, I 

hope you’ll like this book.

InTroduCTIon
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CHAPTER 1

The basics of 
machine learning

1.1  What is machine learning?
Over the past few years, you’ve probably heard the words “machine 

learning” many times, but what is it exactly? Is it the same thing as artificial 

intelligence? What about deep learning? Neural networks? Models?

Before diving deeper into the tools, algorithms, and what can be 

built, let’s start by defining some of these terms to gain a common 

understanding of what machine learning is and is not.

Artificial intelligence, machine learning, and deep learning are all 

related terms. However, they’re not exactly the same thing, they’re more 

like subsets of each other.

https://doi.org/10.1007/978-1-4842-6418-8_1#DOI
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Artificial intelligence is the umbrella term for everything related to 

the expression of “intelligence” by computers. This can include speech 

recognition (the understanding of human speech), autonomous cars, or 

strategic gaming (the ability for computers to play strategic games like Go 

or Chess).

Machine learning represents the technology itself: all the practices 

and set of tools to give the ability to computers to find patterns in data 

without being explicitly programmed.

This includes the different types of learning and algorithms available 

such as supervised learning, Naive Bayes, K-nearest neighbors, and so on 

that we will cover in the next few chapters.

Figure 1-1. This graph is a representation of how artificial 
intelligence, machine learning, and deep learning connect

Chapter 1  the basiCs of maChine learning
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This technology is used to train computers to make their own 

predictions based on a developed understanding of historical data.

What this means is that we’re not telling computers exactly what to 

look for; instead, we feed algorithms a lot of data previously collected 

and let them find patterns and correlations in this dataset to draw future 

conclusions and probabilities when given new data.

For example, if we want to use machine learning to help us calculate 

the probability of a person having cancer based on their CT scans, we 

would build a dataset of hundreds of thousands, or even millions, of CT 

scans from diverse patients around the world. We would label this data 

between CT scans of cancerous patients and scans of healthy patients. 

We would then feed all this data to machine learning algorithms and let 

them find patterns in those medical images to try and develop an accurate 

understanding of what a cancerous scan looks like.

Then, using the model generated by all this training, we would be able 

to use it on a new scan that wasn’t part of the training data, and generate a 

probability of a patient having cancer or not.

Finally, deep learning is a specific tool or method. It is related to 

another term you might be familiar with, called artificial neural networks. 

Deep learning is the subset of machine learning that uses algorithms 

inspired by the structure and function of the brain.

The concept of neural networks in machine learning is not new, but 

the term deep learning is more recent.

Essentially, this method allows the training of large neural networks in 

the aim to make revolutionary advances in machine learning and AI.

Deep learning has been taking off over the past few years mainly 

thanks to advancements in computing power and the amount of data we 

are now collecting.

In comparison to other machine learning algorithms, deep learning 

ones have a performance that continues to improve as we increase the 

amount of data we feed them, which makes them more scalable where 

others plateau.

Chapter 1  the basiCs of maChine learning
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A representation of this can be found in this slide from a talk by 

Andrew Ng at ExtractConf 2015 entitled “What data scientists should know 

about deep learning.”

As you can see in the preceding graph, the main differential 

characteristic of deep learning algorithms is their ability to scale and 

increase performance with more data.

The term “deep” learning generally refers to the amount of layers used 

in the neural networks. If this does not totally make sense right now, we’ll 

cover the concept of layers a bit later in this book.

Now that we know more about the difference between these terms, this 

book is going to be focusing mainly on machine learning, the technology. 

Figure 1-2. This slide illustrates how deep learning scales compared 
to other machine learning algorithms. Source: https://www.
slideshare.net/ExtractConf

Chapter 1  the basiCs of maChine learning

https://www.slideshare.net/ExtractConf
https://www.slideshare.net/ExtractConf
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We’ll be diving a little bit into deep learning as we look into different 

techniques but we’ll touch on broader aspects of the technology as well.

We’ve defined the different names sometimes interchangeably used 

to talk about intelligence expressed by computers, but what about other 

important idioms like “neural networks,” “algorithms,” and “models”?

We are probably going to mention them along the book, so let’s spend 

the next few paragraphs defining them.

Let’s start with algorithms as this is the one you might be the most 

familiar with as it is already used in traditional programming.

An algorithm can be defined as a set of rules or instructions to solve a 

particular problem or perform a computation.

In software engineering, examples of algorithms you might have 

heard of or used would be the quicksort algorithm, the Dijkstra algorithm, 

binary search, and so on. Each algorithm was created to solve a particular 

problem.

When it comes to machine learning algorithms, they solve different 

types of problems but the concept is the same; each algorithm, it being 

a support vector machine (SVM) or a long short-term memory (LSTM) 

algorithm, is only a mathematical function that solves a specific problem.

Neural networks are a set of deep learning algorithms designed to 

mimic the way the brain works.

The same way the brain is made of a giant network of connected 

neurons, neural networks are made of layers of interconnected nodes 

called artificial neurons.

A visual way of representing these networks might be like the following 

graph.

Chapter 1  the basiCs of maChine learning



6

In neural networks, there are usually three main parts, an input layer 

that represents the input data you want to generate a prediction for (e.g., 

an image you want to apply object detection to, a piece of text you want 

to get the sentiment for, etc.), a certain number of hidden layers, and an 

output layer that represents your prediction.

This is a very high-level explanation of how neural networks work, 

but the most important part to understand is that they are made of a large 

number of interconnected nodes, organized in layers, that get activated 

or not during the training process depending on the outcome generated 

by neurons in the previous layer, in a similar way different neurons in the 

brain fire when given specific inputs.

Finally, models. In machine learning, models represent the output of 

a training session. When the training process is happening, algorithms are 

“learning” to draw conclusions from patterns they find in data; once the 

training steps are done, the output is a model.

Figure 1-3. This graph is a representation of the different layers in a 
neural network

Chapter 1  the basiCs of maChine learning
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Models are mathematical functions that can take new inputs as 

parameters and produce a prediction as output.

For example, image classification models have been trained with 

thousands of labelled images to recognize patterns in the data and predict 

the presence of certain entities (e.g., cats, dogs, cars, people, etc.). When 

using an image classification model in a new application, you would be 

able to feed it a new image that might not have been part of the training 

dataset, and have it generate a prediction of what might be in this image it 

has never “seen” before based on the learnings from the training process.

At the end of the training process, you generally test your model with 

new input that was not part of the training dataset to test the validity of the 

prediction generated.

Now that we’ve defined a few of the important terms you’ll come 

across when diving into machine learning, I think it is important to go 

quickly over what machine learning is not.

Hopefully, the last few paragraphs made it more clear that machine 

learning is not able to generate predictions without being fed some 

pregathered data.

The same way we, as humans, cannot recognize a new object or entity 

we’ve never been exposed to, an algorithm also needs to be given some 

kind of information before being able to identify a new input.

For example, the first time I heard about 3D printers, I was struggling 

to be able to visualize what it was. When I finally saw and interacted with 

one, I then had an understanding of what the object was and was able to 

recognize future ones.

The brain does this very fast, but algorithms need a lot more data to 

be trained with before being able to develop an understanding of what 

objects are.

Because algorithms are basically mathematical functions, it is 

important to take with a grain of salt what you can read about the evolution 

of AI in the future.

Chapter 1  the basiCs of maChine learning
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As performant as it can be, AI systems still need to be trained on a lot of 

data we have to previously gather. As a result, I believe the opportunity of 

machine learning applications resides in augmenting humans rather than 

replacing them.

An example of that would be in the field of healthcare. I don’t 

particularly believe that AI systems will replace doctors, but we’re already 

seeing how machine learning helps them by being able to process a 

massive amount of medical images and identify and diagnose diseases 

in CT scans and MRIs, sometimes with higher accuracy than healthcare 

professionals.

By relying on machine learning models this way, we can hope to 

diagnose and help people faster.

It is also important to remember that computers don’t have a real 

understanding of the context of the information they are working with. 

Certain problems we need to solve are very complex from a societal point 

of view and should probably not be solved using machine learning only. 

We will cover a bit more about the topic of ethics and AI toward the end of 

this book.

1.2  Types of machine learning
Problems solved using machine learning usually fall into one of the 

three main categories: supervised learning, unsupervised learning, and 

reinforcement learning.

You might also hear about semi-supervised learning, but this book is 

not going to cover it.

Knowing which type of problem you are trying to solve is important 

because it will determine which algorithms you’ll want to use, how you will 

prepare your data, and what kind of output you will get.

First of all, let’s start with the most popular one, supervised learning.

Chapter 1  the basiCs of maChine learning
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1.2.1  Supervised learning
Supervised learning is the ability to find patterns in data using both 

features and labels.

Here, we just introduced two new data-related terms we need to define 

before we keep going.

When using a dataset, features represent the characteristics of each 

entry and labels are how you would define these entries. Let’s use an 

example to put this in practice.

Let’s say you want to sell your house but are not sure about what price 

would be the most competitive on the market, but you have access to a 

large dataset containing information about all the houses and their price, 

in the city you live in.

In this case, the features would be details about each house (number 

of bedrooms, bathrooms, floors, type of house, does it have a balcony, 

garden, etc.), and the labels would be their price.

It could look something like this.

Table 1-1. This table represents an example of a labelled dataset

Price Number of 
bedrooms

Number of 
bathrooms

Number of 
floors

Balcony Garden

$1,500,000 3 2 2 no Yes

$500,000 1 1 1 Yes no

$750,000 1 1 1 no Yes

$1,700,000 4 2 2 no Yes

$700,000 2 1 1 no no

$850,000 2 1 1 Yes Yes

$525,000 1 1 1 no no

$2,125,000 5 3 3 Yes Yes

$645,000 1 1 1 Yes Yes

Chapter 1  the basiCs of maChine learning
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A real dataset would have many more entries and more features would 

be gathered, but this is only an example to illustrate the concept of features 

and labels.

Using this labelled data, we can use machine learning to predict the 

price at which your house should be put on the market for.

For example, based on the preceding data, if your house had 1 

bedroom, 1 bathroom, no balcony but a garden, its price would be closer 

to about $750,000 than $1,000,000.

In this quick example, we can do it manually by looking at the data, but 

in a real-life situation, the amount of data would be much larger, and using 

machine learning would be able to do this calculation much faster than 

humans.

Some other examples of supervised learning problems include 

predicting if an email is spam or not, predicting the probability of a sports 

team winning based on previous game data, predicting the probability of 

an insurance claim being fraudulent.

In summary, supervised learning is the creation of predictions based 

on labelled data.

1.2.2  Unsupervised learning
Another common type of learning is called unsupervised learning. 

Contrary to supervised learning, unsupervised learning is the creation 

of predictions based on unlabelled data. What this means is that we rely 

only on the set of features.

If we think about our previous dataset of houses, it means we would 

remove the column “Price” and would end up only with the data about the 

characteristics of each house.

If we reuse the scenario of wanting to predict the price at which we 

should sell our house, you might be wondering, how can we predict this 

price if our data is not labelled (does not contain any price)?

Chapter 1  the basiCs of maChine learning
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This is where the importance of thinking about the problem you are 

trying to solve and paying attention to the data you possess comes into play.

With unsupervised learning, we are not trying to predict a single 

outcome, or answer a specific question, but instead, identify trends.

In our house problem, our question was “How much can I sell my 

house for?” where we would expect a specific price as an outcome. 

However, as mentioned previously in this book, a machine learning 

algorithm cannot really predict a price if the dataset it was fed with during 

training did not contain any price.

Therefore, this is not the type of situation where we would use 

unsupervised learning.

As unsupervised learning is about identifying trends and classifying 

data into groups, a good example of problems that would fall into this 

space would be predicting customer behavior.

With this type of problem, we are not trying to answer a question 

with a specific answer; instead, we are trying to classify data into different 

categories so we can create clusters of entities with similar features.

Using our example of predicting customer behavior, by gathering data 

about each customer, we can use machine learning to find behavioral 

correlation between customers and find buying patterns that would help 

in applications such as advertising.

Gathering and using data about where you shop, at what time, how many 

times a week, what you buy, and so on, we can draw conclusions about your 

gender, age, socioeconomic background, and more, which can then be used 

to predict what you might be likely to buy based on the cluster you belong to.

You might be familiar with a real-world application of this type of 

prediction if you’ve been exposed to music recommendation on Spotify or 

product recommendation on Amazon.

Based on your listening and buying habits, companies gather data and 

use machine learning to cluster customers into groups, and based on what 

other people like you have listened to, they propose recommendations of 

songs or products you might like.

Chapter 1  the basiCs of maChine learning



12

1.2.3  Reinforcement learning
A third type of learning is called reinforcement learning. If you’re reading 

this book, you are likely just getting started with machine learning so you 

probably won’t be using it at first.

Reinforcement learning is mostly used for applications such as self- 

driving cars, games with AI players, and so on where the outcome involves 

more of a behavior or set of actions.

It relies on the concept of reward and penalty and the relationship 

between an “agent” and an “environment.”

We can imagine the scenario of a game of Pong where the environment 

is the game and the agent is a player. Actions from the player change the 

state of the game. Changing the position of the paddles influences where 

the ball goes and eventually results in the player winning or losing.

When a sequence of actions results in the player winning, the system 

gets some kind of reward to indicate that this particular set of interactions 

resulted in achieving the goal of the training process, creating an AI player 

that can win a game by itself.

The training process then continues, iterating over different sets of 

interactions, getting rewards when winning (+1 point), a penalty when 

losing (-1 point), and correcting itself to develop an understanding of how 

to win the game against another player over time.

This type of learning does not rely on a preexisting dataset used to feed 

an algorithm.

Instead, it uses a set of goals and rules (e.g., the paddle can only go up 

and down, the goal is to win against the other player, etc.) to learn by itself 

the correct behavior to optimize its opportunities to achieve the set goal.

Reinforcement learning lets the system explore an environment and 

make its own decisions.

This type of learning often demands a very long training process 

involving a huge amount of steps. One of the issues resides in the fact that, 

when receiving a penalty for losing a game, the system assumes that the 
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entire sequence of actions taken in the round caused it to lose. As a result, 

it will avoid taking all these steps again instead of identifying which steps 

in the action sequence contributed to losing.

1.2.4  Semi-supervised learning
Finally, let’s talk briefly about semi-supervised learning.

Semi-supervised learning sits between supervised and unsupervised 

learning. As mentioned in the last few pages, supervised learning deals 

with labelled data and unsupervised learning uses unlabelled data.

Sometimes, when using a large dataset of unlabelled data, we can 

proceed to label a subset of it and use semi-supervised learning to do what 

is called pseudo-labelling.

What this means is that we’re going to manually label a portion of our 

dataset and let the algorithm label the rest to end up with a fully labelled 

set.

For example, if we have a collection of hundreds of thousands of 

images of cats and dogs that are not already labelled, we can label a part 

of it ourselves and feed it to a semi-supervised learning algorithm that is 

going to find patterns in these images and is going to be able to take the 

rest of the unlabelled dataset as input and attach the label “cat” or “dog” to 

each new image, resulting in all the data being labelled.

This technique allows us to generate a labelled dataset much faster 

than having to do it manually so we can then proceed to use supervised 

learning on it.

Understanding which type of learning your problem falls into is usually 

one of the first steps.

Now that we’ve covered the main ones, let’s look into some of the most 

well-known algorithms.
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1.3  Algorithms
As with standard programming, machine learning uses algorithms to help 

solve problems.

However, it is not essential to understand the implementation of all 

algorithms before being able to use them. The most important is to learn 

which type of learning they belong to and the type of data they are the 

most efficient with.

If you compare it with web programming, there are a lot of different 

JavaScript frameworks available, and you don’t necessarily need to 

understand their source code to be able to build your applications using them. 

What you need to know, however, is if they support the features you need.

In the context of machine learning, some algorithms are very good at 

working with image data, while others are better at handling text data.

Let’s dive into some of them.

1.3.1  Naive Bayes
The Naive Bayes algorithm is a supervised learning classification algorithm.

It predicts the probability of different classes based on various 

attributes and prior knowledge.

It is mostly used in text classification and with problems having 

multiple classes. It is considered highly scalable and requires less training 

data than other algorithms.

A practical example of problem that could be solved with Naive Bayes 

would be around filming a TV series.

Unless all of the plot happens indoors, the production of the show will 

be impacted by environmental factors such as the weather, humidity level, 

temperature, wind, season, and so on.

As parts of a TV show are not filmed in order, we could use machine 

learning to help us find the best days certain parts of the show should be 

filmed on, based on the requirements of certain scenes.
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Gathering a dataset of weather attributes and whether or not an 

outdoor scene was filmed, we would be able to predict the probability of 

being able to film a new scene on a future day.

This algorithm is called “Naive” as it makes the assumption that all the 

variables in the dataset are not correlated to each other.

For example, a rainy day does not have to also be windy or a high level 

of humidity does not have to correlate to a high temperature.

1.3.2  K-nearest neighbors
Another popular algorithm is called K-nearest neighbors.

This algorithm is a classification algorithm that assumes that similar 

things exist in close proximity to each other, so near each other.

A good way to illustrate this is with an example graph. When working 

on machine learning problems, you can visualize data like this.

Figure 1-4. This illustration represents a visualization generated 
by using a K-nearest neighbors classification algorithm. Source: 
https://machinelearningmastery.com/tutorial-to-implement-
k-nearest-neighbors-in-python-from-scratch/
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In the preceding visualization, we can see that the data plotted ends up 

creating some kind of organized clusters. Similar data points exist close to 

each other.

The K-nearest neighbors algorithm (KNN) works on this idea of 

similarity to classify new data.

When using this algorithm, we need to define a value for “K” that will 

represent the amount of closest data points (neighbors) we will take into 

consideration to help us classify a new entry.

For example, if we pick the value K = 10, when we want to predict the 

class for a new entry, we look at the 10 closest neighbors and their class. 

The class that has the highest amount of neighbors to our new data point is 

the class that is predicted to be the correct one.

A practical example for this would be in predicting customer behavior 

or likelihood to buy certain items.

A supermarket chain has access to data from people’s purchases and 

could use unsupervised learning to organize customers into clusters based 

on their buying habits.

Examples of clusters could be customers who are single vs. those who 

have a family, or customers who belong to a bracket of certain ages (young 

vs. old).

Considering that people have, in general, similar buying habits to 

people in the same cluster, using the K-nearest neighbors algorithm would 

be useful in predicting what kind of products people would be likely to buy 

and use this information for advertising.

1.3.3  Convolutional neural networks
Convolutional neural network, also known as ConvNet or CNN, is an 

algorithm that performs really well at classifying images. It can be used for 

problems such as object detection and face recognition.
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Unlike humans, computers process images as an array of pixels which 

length would be equal to height * width * dimension. A RGB image of 16x16 

pixels would be interpreted as a matrix of 16*16*3 so an array of 768 values.

A classic example of problem solved using a CNN is using the MNIST 

dataset of handwritten digits.

The preceding image illustrates how a convolutional neural network 

would predict the number handwritten in the input image.

It would start by transforming the image into an array of 2352 values 

(28*28*3) to transform a 3D input into a 1D one. It would then run the data 

into different layers and filters of the neural network to end up with an 

output layer of 10 options, as the digit to predict would be between 0 and 9.

The output of the prediction would be a probability for each entry of 

the output layer, and the entry with the highest probability would be the 

correct one.

Figure 1-5. This is a representation of how a convolutional network 
works, from an input image to hidden layers, and outputting a 
number Source: https://towardsdatascience.com/mnist-
handwritten- digits-classification-using-a-convolutional-
neural-network-cnn-af5fafbc35e9
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If the problem you are trying to solve involves a dataset of images, you 
probably want to play around with a CNN algorithm.

These three algorithms fall into different categories. Naive Bayes belongs 
to Bayesian algorithms, K-nearest neighbors to instance-based algorithms, 
and convolutional neural networks (CNN) to deep learning algorithms.

There are a lot more categories and algorithms to explore; however, 
covering all of them is not the goal of this book. As you dive deeper into 
machine learning and build your own applications, you should definitely 
look into more of them as you experiment. There is not always a single 
solution to a problem, so learning about different algorithms will allow you 
to find the one best suited to what you are trying to achieve.

1.4  Applications
Some applications were mentioned in the last few pages of this book when 
attempting to illustrate concepts with examples; however, there are many 
more use cases for machine learning in various fields.

1.4.1  Healthcare
An example of using machine learning in healthcare was introduced when 
I talked about how systems can be used to detect diseases in CT scans.

Apart from making diagnoses from image analysis, other applications 
in this field include treatment personalization and “data wrangling” of 
personal records.

Clinical data is not always digital, with a lot of forms and prescriptions 
still being handwritten; and if it is digital, each health system customizes 
their Electronic Health Records (EHR), making the data collected in one 
hospital different from the data collected at others.

Data wrangling is the concept of capturing, organizing, and triaging data. 
Using Optical Character Recognition (OCR), a system could scan a handwritten 
document, parse words, and use a technique called “entity extraction” to 

understand them and their semantical relationship to each other.
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This way, medical documents can be automatically saved in a 

database, respecting the same format, which makes it easier to search, 

analyze, or use in the future.

A few of the biggest tech companies dedicate a part of their research 

center to the development of innovative solutions in this space.

Microsoft, for example, is working on a few research projects like 

project InnerEye, that aims to turn radiological images into measuring 

devices. Using machine learning algorithms, the goal of this project 

is to automatically detect tumors in 3D radiological images, as well as 

generating precise surgery planning and navigation.

IBM has a project called IBM Watson for Oncology that helps 

physicians identify key information in a patient’s medical record to help 

explore personalized treatment options.

Google has developed a protocol buffer for the Fast Healthcare 

Interoperability Resources (FHIR) standard that aims at homogenizing 

the way medical data is stored, so developers can build machine learning 

systems that can be used by any healthcare institution.

Figure 1-6. Example of timeline built using patient’s health records. 
Source: https://ai.googleblog.com/2018/05/deep-learning-
for-electronic-health.html

Chapter 1  the basiCs of maChine learning

https://ai.googleblog.com/2018/05/deep-learning-for-electronic-health.html
https://ai.googleblog.com/2018/05/deep-learning-for-electronic-health.html


20

The preceding visualization represents a timeline of patient’s health 

record data. Each gray dot is a piece of data stored in the open data 

standard FHIR. A deep learning model can then analyze this data to make 

predictions.

1.4.2  Home automation
The application for machine learning you might be the most familiar with 

is in home automation.

You probably have heard of, or may even possess, some Internet of 

Things devices that use machine learning such as the Amazon Alexa or 

Google Home.

These devices use speech recognition algorithms and natural language 

processing (NLP) to identify the words you are saying, analyze the intent, 

and provide the most accurate response possible.

Something worth mentioning is that there is a difference between 

a “connected” device and a “smart” one. The Internet of Things can be 

defined as a network of connected “things,” meaning that devices are 

connected to each other, usually via Wi-Fi or Bluetooth.

However, some devices are simply connected, such as the Philips Hue 

light bulb, that you can control remotely from your phone. It does not use 

any machine learning algorithm to produce any output; it only turns on 

and off or changes color.

On the other hand, devices like the Nest thermostat would fall into the 

category of “smart devices.” It implements a more complex functionality 

as it really learns from your behavior over time. As you change the 

temperature of your house over a period of time, sometimes even during 

the same day, it learns your habits and adapts automatically.

Just like the Philips Hue, it also lets you control it from anywhere 

using your phone, but the additional learning part is an example of using 

machine learning in home automation.
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Some research centers are working on improving devices like 

the Google Home to go beyond speech recognition toward activity 

recognition.

Leveraging the device’s microphone, you can use machine learning 

algorithms and sound data to predict what a user is currently doing or 

which room they are in. Accessing this information would allow us to 

build more personalized smart systems. You could imagine listening to a 

recipe using a Google Home, following step by step, and the device would 

be able to pause automatically when it recognizes that you are chopping 

something, or using a whisk, and so on based on recognizing patterns in 

the sound data it is receiving.

1.4.3  Social good
There is a rising fear in the consequences of using machine learning to 

solve certain problems, for example, in the justice system; however, there 

is also a lot of potential of using it for social good.

Either it be for animal protection or to prevent deforestation, the 

applications of machine learning in this space are very exciting.

Some projects aim to protect endangered species like the killer 

whales (also known as orcas) in the Salish Sea, from British Columbia to 

Figure 1-7. Examples of spectrograms representing the sound data 
produced by different activities. Source: www.gierad.com/projects/
ubicoustics/
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Washington State. With only about 73 of them left, Google partnered with 

Fisheries and Oceans Canada (DFO), as well as Rainforest Connection, to 

track and monitor orca’s behavior using deep neural networks.

Teaching a machine learning model to recognize orca sounds, it can 

then detect the presence of the animal and alert experts in real time. This 

type of system can help monitor the animals’ health and protect them in 

the event of an oil spill, for example.

Another project by Rainforest Connection aims to prevent illegal 

deforestation using machine learning and used cell phones.

The devices monitor the sounds of the forest, 24 hours a day, send all 

the audio data to the cloud, and, using TensorFlow, analyze it in real time 

to identify chainsaws, logging trucks, and all sounds of illegal activity to 

alert locals.

Figure 1-8. Visual representation of how the Rainforest Connection 
project against illegal deforestation works. Source: www.ted.com/
talks/topher_white_what_can_save_the_rainforest_your_used_
cell_phone#t-289131
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There are plenty more interesting projects focusing on leveraging the 

possibilities of machine learning to help social causes. Even though this is 

not the focus of this book, I encourage you to do further research if this is 

something you would like to contribute to.

1.4.4  Art
Art might not be your first concern when wanting to learn more about 

machine learning; however, I really think its importance is deeply 

underrated in the field of technology.

Art very often experiments with the latest technological innovations 

much faster than any other field.

Monitoring how machine learning is used in creative ways can give us 

an idea of how far the technology can go.

Not only is it important to expose yourself to the work of artists, but I 

would also recommend trying to build creative applications yourself.

Spending some time working on a creative way to implement a certain 

technology to your project will give you the opportunity to explore parts of 

the tool you might have never thought of before.

Creativity can help you identify new use cases, opportunities, and 

limits of the tools you are using.

Especially in a field like machine learning, where so many things are 

still unknown, there is a vast potential to come up with new ideas of what 

is possible.

Some examples of machine learning used in creative ways are in the 

work of artists like Memo Akten. In his project “Learning to See,” he uses 

deep neural networks and a live camera input to try to make sense of what 

it sees, in the context of what it has seen before.
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A model has been trained with images of oceans. It is given a new input 

from a camera feed (on the left), analyses it, and tries to understand its 

meaning based on the training data it was fed with. The outcome is what it 

“sees,” how the model understands the new input, in the context of what it 

knows.

Another example is the work from the Magenta team at Google, 

working on building machine learning models that can generate pieces of 

music by themselves. Such work can revolutionize the way humans use 

technology in music production.

1.5  Summary
After introducing some of the general theoretical concepts of machine 

learning, it is time to start diving into some more practical content and talk 

about how to get started building AI projects as a front-end developer.

Figure 1-9. Sample from art project “Learning to See” by Memo 
Akten. Source: www.memo.tv/portfolio/gloomy-sunday/
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CHAPTER 2

TensorFlow.js
TensorFlow.js is an open source JavaScript library for machine learning. It is 

developed by Google and is a companion library to TensorFlow, in Python.

This tool enables you to build machine learning applications that can 

run in the browser or in Node.js.

This way, users don’t need to install any software or driver. Simply 

opening a web page allows you to interact with a program.

2.1  Basics of TensorFlow.js
TensorFlow.js is powered by WebGL and provides a high-level layers API for 

defining models and low-level API (previously deeplearn.js) for linear algebra.

Figure 2-1. Visual representation of the TensorFlow.js API.  
Source: https://blog.tensorflow.org/2018/03/introducing-
tensorflowjs-machine-learning-javascript.html

https://doi.org/10.1007/978-1-4842-6418-8_2#DOI
https://blog.tensorflow.org/2018/03/introducing-tensorflowjs-machine-learning-javascript.html
https://blog.tensorflow.org/2018/03/introducing-tensorflowjs-machine-learning-javascript.html


26

It also supports importing models saved from TensorFlow and Keras.

At the core of TensorFlow is tensors. A tensor is a unit of data, a set 

of values shaped into an array of one or more dimensions. It is similar to 

multidimensional arrays.

2.1.1  Creating tensors
For example, you imagine the following example 2D array.

Listing 2-1. Example of 2D array

const data = [

     [0.456, 0.378, 0.215],

     [0.876, 0.938, 0.276],

     [0.629, 0.287, 0.518]

];

The way to transform this into a tensor so it can be used with 

TensorFlow.js is to wrap it with the built-in method tf.tensor.

Listing 2-2. Creating a tensor out of an array

const data = [

     [0.456, 0.378, 0.215],

     [0.876, 0.938, 0.276],

     [0.629, 0.287, 0.518]

];

const dataTensor = tf.tensor(data);

Now, the variable dataTensor can be used with other TensorFlow 

methods to train a model, generate predictions, and so on.
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Some extra properties can be accessed in tf.tensor, such as rank, 

shape, and dtype.

• rank: Indicates how many dimensions the tensor 

contains

• shape: Defines the size of each dimension of the data

• dtype: Defines the data type of the tensor

Listing 2-3. Logging a tensor’s shape, rank, and dtype

const tensor = tf.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);

console.log("shape: ", tensor.shape); // [3,3]

console.log("rank: ", tensor.rank); // 2

console.log("dtype: ", tensor.dtype); // float32

In the sample tensor illustrated, the shape returns [3, 3] as we can 

see 3 arrays containing 3 values.

The rank property prints 2 as we are working with a 2D array. If we had 

added another dimension to our array, the rank would have been 3.

Finally, the dtype is float32 as this is the default data type.

Tensors can also be created using other data types like bool, int32, 

complex64, and string dtypes. To do so, we need to pass the shape as 

second parameter and dtype as a third parameter to tf.tensor.

Listing 2-4. Creating different kinds of tensors

const tensor = tf.tensor([[1, 2], [4, 5]], [2,2], "int32");

console.log("shape: ", tensor.shape); // [2,2]

console.log("rank: ", tensor.rank); // 2

console.log("dtype: ", tensor.dtype); // int32
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In the sample code shown so far, we used tf.tensor to create tensors; 

however, more methods are available to create them with different 

dimensions.

Depending on the data you are working with, you can use the 

methods from tf.tensor1d to tf.tensor6d to create tensors of up to six 

dimensions.

If the data you are transforming is a multidimensional array of six 

layers, you can use both tf.tensor and tf.tensor6d; however, using tf.

tensor6d makes the code more readable as you can automatically know 

the amount of dimensions.

Listing 2-5. Creating multidimensional tensors

const tensor = tf.tensor6d([

  [

    [

      [

        [[1], [2]],

        [[3], [4]]

      ],

      [

        [[5], [6]],

        [[7], [8]]

      ]

    ]

  ]

]);

// Is the same thing as
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const sameTensor = tf.tensor([

  [

    [

      [

        [[1], [2]],

        [[3], [4]]

      ],

      [

        [[5], [6]],

        [[7], [8]]

      ]

    ]

  ]

]);

When creating tensors, you can also pass in a flat array and indicate 

the shape you would like the tensor to have.

Listing 2-6. Creating tensors from flat arrays

const tensor = tf.tensor2d([

  [1, 2, 3],

  [4, 5, 6]

]);

// is the same thing as

const sameTensor = tf.tensor([1, 2, 3, 4, 5, 6], [2, 3]);

Once a tensor has been instantiated, it is possible to change its shape 

using the reshape method.
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2.1.2  Accessing data in tensors
Once a tensor is created, you can get its values using tf.array() or tf.

data().

tf.array() returns the multidimensional array of values, and tf.

data() returns the flattened data.

Listing 2-7. Accessing data in tensors

const tensor = tf.tensor2d([[1, 2, 3], [4, 5, 6]]);

const array = tensor.array().then(values => console.log("array: 

": values));

// array: [ [1, 2, 3], [4, 5, 6] ]

const data = tensor.data().then(values => console.log("data: ", 

values));

// data: Float32Array [1, 2, 3, 4, 5, 6];

As you can see in the preceding example, these two methods return a 

promise.

In JavaScript, a promise is a proxy for a value that is not created yet at 

the time the promise is called. Promises represent operations that have 

not completed yet, so they are used with asynchronous actions to supply a 

value at some point in the future when the action has completed.

However, a synchronous version is also provided using arraySync() 

and dataSync().

Listing 2-8. Accessing data in tensors synchronously

const tensor = tf.tensor2d([[1, 2, 3], [4, 5, 6]]);

const values = tensor.arraySync();

console.log("values: ": values); // values: [ [1, 2, 3],  

[4, 5, 6] ]
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const data = tensor.dataSync()

console.log("data: ", values); //  data: Float32Array [1, 2, 3, 

4, 5, 6];

It is not recommended to use them in production applications as they 

will cause performance issues.

2.1.3  Operations on tensors
In the previous section, we learned that tensors are data structures that 

allow us to store data in a way TensorFlow.js can work with. We saw how to 

create them, shape them, and access their values.

Now, let’s look into some of the different operations that allow us to 

manipulate them.

These operations can be organized into categories. Some of them allow 

you to do arithmetic on a tensor, for example, adding multiple tensors 

together, other operations focus on doing logical operations such as 

evaluating if a tensor is greater than another, and others provide a way to 

do basic maths, like computing the square of all elements in a tensor.

The full list of operations is available at https://js.tensorflow.org/

api/latest/#Operations.

Here’s an example of how to use these operations.

Listing 2-9. Example of operation on a tensor

const tensorA = tf.tensor([1, 2, 3, 4]);

const tensorB = tf.tensor([5, 6, 7, 8]);

const tensor = tf.add(tensorA, tensorB); // [6, 8, 10, 12]

// or

// const tensor = tensorA.add(tensorB);

Chapter 2  tensorFlow.js

https://js.tensorflow.org/api/latest/#Operations
https://js.tensorflow.org/api/latest/#Operations


32

In this example, we’re adding two tensors together. If you’re looking at 

the first value of tensorA, which is 1, and the first value of tensorB, which 

is 5, adding 1 + 5 does result in the number 6, which is the first value of our 

final tensor.

To be able to use this kind of operations, your tensors have to have the 

same shape but not necessarily the same rank.

If you remember from the last few pages, the shape is the amount of 

values in each dimension of the tensor, when the rank is the amount of 

dimensions.

Let’s illustrate this with another example.

Listing 2-10. Example of operation on a tensor

const tensorA = tf.tensor2d([[1, 2, 3, 4]]);

const tensorB = tf.tensor([5, 6, 7, 8]);

const tensor = tf.add(tensorA, tensorB); // [[6, 8, 10, 12],]

In this case, tensorA is now a 2D tensor, but tensorB is still one 

dimensional.

The result of adding the two is now a tensor with the same values as 

before but with a different number of dimensions.

However, if we try to add multiple tensors with different shapes, it will 

result in an error.

Listing 2-11. Error generated when using an incorrect shape

const tensorA = tf.tensor([1, 2, 3, 4]);

const tensorB = tf.tensor([5, 6, 7]);

const tensor = tf.add(tensorA, tensorB);

// Error: Operands could not be broadcast together with shapes 

3 and 4.
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What this error is telling us is that this operand cannot be used with these 

two tensors, as one of them has four elements, and the other only three.

Tensors are immutable, so these operations will not mutate the 

original tensors, but will instead always return a new tf.Tensor.

2.1.4  Memory
Finally, when working with tensors, you need to explicitly clear up memory 

using dispose() or tf.dispose().

Listing 2-12. Using the dispose method

const tensor = tf.tensor([1, 2, 3, 4]);

tensor.dispose();

// or

tf.dispose(tensor);

Another way to manage memory is using tf.tidy() when chaining 

operations.

As tensors are immutable, the result of each operation is a new tensor. 

To avoid having to call dispose on all the tensors you generate, using 

tf.tidy() allows you to only keep the last one generated from all your 

operations and dispose of all the others.

Listing 2-13. Using the tidy method

const tensorA = tf.tensor([1, 2, 3, 4]);

const tensor = tf.tidy(() => {

  return tensorA.square().neg();

});

console.log(tensor.dataSync()); // [-1, -4, -9, -16]
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In this example, the result of square() is going to be disposed, whereas 

the result of neg() won’t as it returns the value of the function.

Now that we have covered what is at the core of TensorFlow.js and how 

to work with tensors, let’s look into the different features offered by the 

library to get a better idea of what is possible.

2.2  Features
In this subchapter, we are going to explore the three main features 

currently available in TensorFlow.js. This includes using a pre-trained 

model; doing transfer learning, which means retraining a model with 

custom input data; and doing everything in JavaScript, meaning, creating a 

model, training it, and running predictions, all in the browser.

We will cover these features from the simplest to use to the most 

complex.

2.2.1  Using a pre-trained model
In the first chapter of this book, we defined the term “model” as a 

mathematical function that can take new parameters to make predictions 

based on the data it had been trained with.

If this definition is still a bit confusing to you, hopefully putting it into 

context while talking about this first feature is going to make it a bit clearer.

In machine learning, to be able to predict an outcome, we need a 

model. However, it is not necessary to have built the model yourself. It is 

totally fine to use what is called “pre-trained models.”

The term “pre-trained” means that this model has already been trained 

with a certain type of input data and has been developed for a specific 

purpose.

For example, you can find some open source pre-trained models 

focused on object detection and recognition. These models have already 
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been fed with millions of images of objects, have gone through all the 

training process, and should now have a satisfying level of accuracy when 

predicting new entities.

Companies or institutions creating these models make them open 

source so developers can use them in their application and have the 

opportunity to build machine learning projects much faster.

As you can imagine, the process of gathering data, formatting it, 

labelling it, experimenting with different algorithms and parameters can 

take a lot of time, so being able to substitute this work by using a pre- 

trained model frees up a lot of time to focus on building applications.

Pre-trained models currently available to use with TensorFlow.js 

include body segmentation, pose estimation, object detection, image 

classification, speech command recognition, and sentiment analysis.

Using a pre-trained model in your application is relatively easy.

In the following code sample, we’re going to use the mobilenet object 

detection model to predict an entity in a new image.

Listing 2-14. Classifying an image using the mobilenet model

const img = document.getElementById("img");

const model = await mobilenet.load();

const predictions = await model.classify(img);

return predictions;

In a real application, this code would need to require the TensorFlow.js 

library and mobilenet pre-trained model beforehand, but more complete 

code samples will be shown in the next few chapters as we dive into 

building actual projects.

The preceding sample starts by getting the HTML element that should 

contain the image we would like to predict. The next step is to load the 

mobilenet model asynchronously.
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Models can be of a rather large size, sometimes a few megabytes, so 

they need to be loaded using async/await to make sure that this operation 

is fully finished by the time you run the prediction.

Once the model is ready, you can call the classify() method on 

it, in which you pass your HTML element, that will return an array of 

predictions.

In an example where you would be using an image of a cat, the output 

of the prediction would look similar to this.

Figure 2-2. A picture of a cat

Figure 2-3. Result of the image classification from the mobilenet 
model applied to the picture of the cat earlier
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The result of using classify() is always an array of three objects 

containing two keys: className and probability.

The className is a string containing the label, or class, the model has 

categorized the new input in, based on the data it has been previously 

trained with.

The probability is a float value between 0 and 1 that represents the 

likelihood of the input data belonging to the className, 0 being not likely 

and 1 being very likely.

They are organized in descending order so the first object in the array 

is the prediction the most likely to be true.

In the output earlier, the model predicts that the image contains a 

“tiger cat” with 70% likelihood.

The rest of the predictions have a probability value that drops quite 

significantly, with 21% chance that it contains a “tabby cat” and about 

0.02% probability that it contains a “bow tie.”

In general, you would focus on the first value returned in the 

predictions, as it has the highest probability; however, 70% is actually not 

that high.

In machine learning, you aim to have the highest probability possible 

when using predictions. In this case, we only predicted the existence of 

a cat in an image, but in real applications, you can imagine that a 30% 

chance of having predicted an incorrect output is not acceptable.

To improve this, in general, we would do what is called 

“hyperparameter tuning” and retrain the model.

Hyperparameter tuning is the process of tweaking and optimizing the 

parameters used when generating a model. It could be adding layers in a 

neural network, changing the batch size, and so on and seeing the effect of 

these changes on the performance and accuracy of the model.

However, when using a pre-trained model, you would not have the 

ability to do this, as the only thing you have access to is the output model, 

not the code written to create it.

This is one of the limits that comes with using pre-trained models.
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When using these models, you have no control over how they were 

created and how to modify them. You usually don’t have access to the 

dataset used in the training process, so you cannot be sure that it will meet 

the requirements for your application.

Besides, you take the risk of inheriting the company’s or institution’s 

biases.

If your application involves implementing facial recognition and you 

decide to use an open source pre-trained model, you cannot be sure this 

model was trained on a diverse dataset of people. As a result, you may be 

unknowingly supporting certain biases by using them.

There had been issues in the past with facial recognition models only 

performing well on white people, leaving behind a huge group of users 

with darker skin.

Even though work has been done to fix this, we regularly hear about 

machine learning models making biased predictions because the data 

used to train them was not diverse enough.

If you decide to use a pre-trained model in a production application, I 

believe it’s important to do some research beforehand.

2.2.2  Transfer learning
The second feature available in TensorFlow.js is called “transfer learning.”

Transfer learning is the ability to reuse a model developed for a task, 

as the starting point for a model on a second task.

If you imagine an object recognition model that has been pre-trained 

on a dataset you don’t have access to, the function at the core of the model 

is to recognize entities in images. Using transfer learning, you can leverage 

this model to create a new one which function will be the same, but 

trained using your custom input data.

Transfer learning is a way to generate a semicustomized model. You 

are still not able to modify the model itself, but you can feed it your own 

data, which can improve the accuracy of the predictions.
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If we reuse our example from the previous section where we used a 

pre-trained model to detect the presence of a cat in a picture, we could see 

that the prediction came back with the label “tiger cat.” This means that 

the model was trained with images labelled as such, but what if we want to 

detect something very different, like Golden Wattles (Australian flowers)?

The first step would be to search for the list of classes the model can 

predict and see if it contains these flowers. If it does, it means the model 

can be used directly, just like shown in the previous section.

However, if it was not trained with images of Golden Wattles, it will 

not be able to detect them until we generate a new model using transfer 

learning.

To do this, a part of the code is similar to the samples shown in the 

previous section as we still need to start with the pre-trained model, but 

we introduce some new logic.

We need to start by importing a K-nearest neighbors classifier to 

our application, alongside TensorFlow.js and the mobilenet pre-trained 

model.

Listing 2-15. Importing TensorFlow.js, mobilenet, and a KNN 

classifier

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/

dist/tf.min.js"></script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

mobilenet@1.0.0"></script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

knn-classifier"></script>

Doing so gives us access to a knnClassifier object.

To instantiate it, we need to call the create method.
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Listing 2-16. Instantiating the KNN classifier

const classifier = knnClassifier.create();

This classifier is going to be used to enable us to make predictions from 

custom input data, instead of only using the pre-trained model.

The main steps in this process involve doing what is called inference 

on the model, which means applying the mobilenet model to new data, 

adding these examples to the classifier, and predicting the classes.

Listing 2-17. Adding example data to a KNN classifier

const img = await webcam.capture();

const activation = model.infer(img, 'conv_preds');

classifier.addExample(activation, classId);

The preceding code sample is incomplete, but we will cover it more in 

depth in the following chapters, when we focus on implementing transfer 

learning in an application.

The most important here is to understand that we save an image from 

the webcam feed in a variable, use it as new data on the model, and add 

this as an example with a class (label) to the classifier, so the end result is 

a model that is able to recognize not only the data similar to the one used 

in the initial training process of the mobilenet model but also our new 

samples.

Feeding a single new image and example to the classifier is not enough 

for it to be able to accurately recognize our new input data; therefore, this 

step has to be repeated multiple times.

Once you think your classifier is ready, you can predict inputs like this.

Listing 2-18. Classifying a new image

const img = await webcam.capture();

const activation = model.infer(img, 'conv_preds');

const result = await classifier.predictClass(activation);
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const classes = ["A", "B", "C"];

const prediction = classes[result.label];

The first steps are the same, but instead of adding the example to the 

classifier, we use the predictClass method to return a result of what it 

thinks the new input is.

We will go more in depth about transfer learning in the next chapter.

2.2.3  Creating, training, and predicting
Finally, the third feature allows you to create the model yourself, run the 

training process, and use it, all in JavaScript.

This feature is more complex than the two previous ones but will be 

covered more deeply in Chapter 5, when we build an application using a 

model we will create ourselves.

It is important to know that creating a model yourself requires a trial 

and error approach.

There is not a single way to solve a problem, and if you decide to go 

down that path, you will need to experiment a lot with different algorithms, 

parameters, and so on.

The most common type of model used is a sequential model that you 

can create with a list of layers.

An example of such model could look like this.

Listing 2-19. Creating a model

const model = tf.sequential();

model.add(tf.layers.conv2d({

      inputShape: [28, 28, 1],

      kernelSize: 5,

      filters: 8,

      strides: 1,
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      activation: 'relu',

      kernelInitializer: 'VarianceScaling'

}));

model.add(tf.layers.maxPooling2d({

      poolSize: [2, 2],

      strides: [2, 2]

}));

model.add(tf.layers.conv2d({

      kernelSize: 5,

      filters: 16,

      strides: 1,

      activation: 'relu',

      kernelInitializer: 'VarianceScaling'

}));

We start by instantiating it using tf.sequential and add multiple 

different layers to it.

This step is a bit arbitrary in the sense that choosing the type and 

number of layers, as well as the parameters passed to the layers, is more of 

an art than a science.

Your model will probably not be perfect the first time you write it and 

will require multiple changes before you end up with a result that will be 

the most performant.

One important thing to keep in mind is to provide an inputShape 

parameter in the first layer of your model to indicate the shape of the data 

the model is going to be trained on. The subsequent layers do not need it.

After creating the model, the next step is to train it with data. This step 

is done using the fit method.

Listing 2-20. Fitting a model with data

await model.fit(data, label, options);

Chapter 2  tensorFlow.js



43

In general, before calling this method, you split your data into batches 

to train your model little by little. An entire dataset is often too big to be 

used at once, so dividing it into batches is important.

The options parameter passed into the function is an object containing 

information about the training process. You can specify the number of 

epochs, which is when the entire dataset is passed through the neural 

network, and also the batch size, which represents the number of training 

examples present in a single batch.

As the dataset is split up in batches passed in the fit method, we also 

need to think about the number of iterations needed to train the model 

with the full dataset.

For example, if our dataset contains 1000 examples and our batch size 

is 100 examples at a time, it will take 10 iterations to complete 1 epoch.

Therefore, we will need to loop and call our fit method 10 times, 

updating the batched data each time.

Once the model is fully trained, it can be used for predictions using the 

predict method.

Listing 2-21. Predicting

const prediction = model.predict(data);

There is more to cover about this feature, but we will look into it further 

with our practical example in the next few chapters.
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CHAPTER 3

Building an image 
classifier
In this chapter, we are going to dive deeper into the features of 

TensorFlow.js by building a couple of web applications that detect 

objects in images.

There will be more complete code samples with explanations, so you 

get a better understanding of how to implement machine learning into 

your projects.

3.1  Using a pre-trained model
The first project we are going to build is a quick game in which you are 

prompted to find specific objects around you, take a picture of them using 

your device’s camera, and check if the machine learning model recognizes 

them.

https://doi.org/10.1007/978-1-4842-6418-8_3#DOI
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The output is going to be as follows:

At the core of this project is the same object detection model we talked 

about previously, called mobilenet.

This model is pre-trained using the open source ImageNet database 

made of images organized in 1000 different classes.

What this means is that the model is able to recognize 1000 different 

objects based on the data it has been trained with.

To start this project, we need to import both TensorFlow.js and the 

mobilenet model.

There are two ways to do this. Either you can import them using script 

tags in your HTML file.

Listing 3-1. Importing TensorFlow.js and mobilenet

<script  src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/

dist/tf.min.js"></script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

mobilenet@1.0.0"></script>

Figure 3-1. Snapshot of the image classification project
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Or, if you are using a front-end framework, for example, React.js, you 

can install TensorFlow.js in your dependencies and then import it in a 

JavaScript file.

In your terminal:

Listing 3-2. Installing the TensorFlow.js and mobilenet modules

npm install @tensorflow/tfjs @tensorflow-models/mobilenet

yarn add @tensorflow/tfjs @tensorflow-models/mobilenet

In your JavaScript file:

Listing 3-3. Importing the modules

import "@tensorflow/tfjs";

Import "@tensorflow-models/mobilenet";

Importing these two files gives us access to the tf and mobilenet 

objects.

The first step we need to take is load the model in the app.

Listing 3-4. Loading the model

async function app(){

       const model = await model.load();

}
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Models being pretty heavy files, they can take a few seconds to load 

and therefore should be loaded using async/await.

If you are curious to know what this object contains, you can log it and 

look at its properties.

Please remember that you do not have to understand every property in 

the object to be able to use it.

One of the properties that could be interesting, however, is the inputs 

property in model.

Figure 3-2. Console output of a model
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This property shows us the type of input used to train the model. 

In this case, we can see that images were used, which makes sense 

considering this is an object detection model. More importantly, we can 

see the shape of the data used in the training process.

The shape attribute reveals the value [-1, 224, 224, 3], which means 

that the images fed to the model were RGB images (the value 3 at the end of 

the array represents the number or channels) of size 224*224 pixels.

This value is particularly interesting for the next part of this chapter, 

where we will look at doing transfer learning with the mobilenet model.

Feel free to explore the model further.

The next step to build this application is to allow TensorFlow.js to 

have access to the input from the webcam to be able to run predictions 

and detect objects.

As our project uses the device’s webcam, we have a <video> element in 

our HTML.

In JavaScript, we need to access this element and use one of 

TensorFlow’s methods to create an object from the data API that can 

capture images as tensors.

Figure 3-3. Console output of a model
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Listing 3-5. Instantiating a webcam object

const webcamElement = document.getElementsByTagName("video")[0];

const webcam = await tf.data.webcam(webcamElement);

These two lines are still part of the setup process of our application. At 

the moment, we only loaded the model and created this webcam variable 

that will transform snapshots from the camera to tensors.

Now, to implement the logic, we need to start by adding a simple 

button to our HTML. It will be used to trigger the image capture on click.

Listing 3-6. Button to capture an image

<button class="capture-image">SNAP</button>

In our JavaScript file, we need to access this element, use the onclick 

event listener, and use TensorFlow.js to capture an image, and classify it.

Listing 3-7. Classifying an image

const captureButton = document.getElementsByClassName("capture- 

image")[0];

captureButton.onclick = async () => {

    const img = await webcam.capture();

    const predictions = await model.classify(img);

    return predictions;

};

To capture an image from the video feed, TensorFlow.js has a 

capture() built-in method that needs to be called on the object previously 

created using tf.data.webcam.

It allows to transform a single image directly into a tensor so it can then 

easily be used with other TensorFlow.js operations.

After capturing an image, we generate predictions by passing it in 

mobilenet.classify.
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This will return an array of predictions.

For example, this picture taken of a plastic bottle will return the 

following array of predictions.

Figure 3-4. Live object classification

Figure 3-5. Prediction result printed in the console
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As you can see, the first prediction, the one the model is the most 

confident about, has a label of “pop bottle, soda bottle”. It successfully 

detected the presence of a bottle in the image; however, the probability is 

really poor, even though it is the correct result.

The fact that the level of confidence in the prediction is only 30% is 

probably due to the background behind the object. The more complex the 

background is, the harder it is going to be for the model to be able to find 

the object in the image and classify it.

This issue is more related to the field of computer vision itself than a 

framework problem.

As the following image demonstrates, if you try taking the same picture 

on a clearer background, the quality of the predictions seems to be much 

better.

Not only is the probability much higher, at almost 89%, but the 

following predictions are also more accurate.

In the first example, the second prediction was “vacuum cleaner”, 

which is far from accurate, but here, it comes back with “water bottle”, 

which is a result much closer to the truth.

Figure 3-6. Prediction results on a clearer background
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This limitation is definitely something you should take into 

consideration if you are planning on integrating object detection into your 

application. Thinking about the context in which your project will be used 

is important to avoid a bad user experience.

Finally, there is one last step in this process. We need to clear up the 

memory we aren’t going to need anymore. Once the image is captured 

and fed to TensorFlow.js to be classified, we don’t need it anymore and 

therefore should free up the memory it is taking.

To do so, TensorFlow.js provides the dispose method that you use like 

this.

Listing 3-8. Free some memory with the dispose method

img.dispose();

We’ve covered the main part of the logic around object detection. 

However, the first part of the game is to be prompted to find specific 

objects to take a picture of.

This code is not TensorFlow.js specific and can be a simple UI that asks 

you to find a new object every time you’ve successfully found the previous 

one.

However, if your UI asks you to find a mobile phone, you would need to 

make sure the model has been trained with pictures of mobile phones so it 

can detect the correct object.

Luckily, a list of the classes of objects that can be recognized by the 

mobilenet model is available in the repository at https://github.com/

tensorflow/tfjs-models/blob/master/mobilenet/src/imagenet_

classes.ts.

If you import this list in your application, your code can then loop 

through this object of 1000 entries and display a random one in the UI to 

ask the user to find this object around them.

As this code does not involve the use of the TensorFlow.js library, we 

are not going to cover it in this book.
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However, if you’d like to see how all the code samples shown earlier fit 

together, here is what it should look like.

Listing 3-9. Complete HTML file

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width, initial- 

scale=1.0"

    />

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/

dist/tf.min.js"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow- 

models/mobilenet@1.0.0"></script>

    <title>Snap it</title>

  </head>

  <body>

    <main>

      <section class="content">

        <h1>Snap it</h1>

        <video></video>

        <button>SNAP</button>

      </section>

    </main>

  </body>

  <script src="index.js"></script>

</html>
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Listing 3-10. Complete JavaScript code

async function app() {

  const webcamElement = document.getElementsByTagName("video")[0];

  const model = await mobilenet.load();

  const webcam = await tf.data.webcam(webcamElement);

   const captureButton = document.getElementsByTagName("button")

[0];

  captureButton.onclick = async () => {

    const img = await webcam.capture();

    const predictions = await model.classify(img);

    img.dispose();

    return predictions;

  };

}

app();

In this subchapter, we’ve used object detection to build a small game, 

but it can be used for very different applications.

3.2  Transfer learning
Using a pre-trained model is really useful, allowing you to build projects 

very fast, but you can quickly reach its limits if you find yourself needing 

something more customized.

In this subchapter, we are going to leverage some parts of the code we 

wrote in the last few pages, and adapt them to use custom input data.

We’re going to collect custom data samples from our webcam to build 

a model that can recognize our head movements. This can then be used 
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as potential controls for interfaces, so you could imagine using this model 

to scroll a web page by tilting your head up and down or using the same 

movements to navigate a map.

This project is going to focus on training the model to recognize new 

samples and testing its predictions.

The code you’ll read in the next few pages will produce an interface 

with buttons to collect new data and an additional button to run the 

predictions. The result will be shown on the page for you to verify the 

accuracy of your model.

Figure 3-7. Classifying head movements from webcam input
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As you can see in the preceding screenshots, head movements 

between down and left are predicted accurately.

To get started, we need to import TensorFlow.js, the mobilenet 

module, and a K-nearest neighbors classifier.

Listing 3-11. Importing TensorFlow.js, mobilenet, and a KNN 

classifier

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/

dist/tf.min.js"></script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

mobilenet@1.0.0"></script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

knn-classifier"></script>

Figure 3-8. Classifying head movements from webcam input
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As mentioned earlier, we also need to have a video element to show the 

webcam feed, some buttons, and a paragraph to display the result of our 

prediction.

Listing 3-12. HTML elements needed for this project

<video class="webcam"></video>

<section class="buttons">

      <button>Up</button>

      <button>Down</button>

      <button>Left</button>

      <button>Right</button>

</section>

<section class="buttons">

      <button class="predict">Predict</button>

</section>

<p class="prediction"></p>

In a JavaScript file, we need to write the logic that will collect a sample 

from the webcam when we click the buttons and feed it to the KNN 

classifier.

Before we dive into the logic, we need to start by instantiating a few 

variables for the classifier, the model, and the webcam.

Listing 3-13. Instantiating the classifier, loading the model, and 

preparing the webcam object

const classifier = knnClassifier.create();

const net = await mobilenet.load();

const webcam = await tf.data.webcam(webcamElement);
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On the last line, the webcamElement variable refers to the HTML video 

element you would get by using standard Document interface methods 

such as getElementsByClassName.

To implement the logic, we can create a new function we are going 

to call addExample. This function is going to capture an image from the 

webcam, transform it into a tensor, retrain the mobilenet model with the 

image tensor and its label, add that example to the KNN classifier, and 

dispose of the tensor.

This may sound like a lot but the code needed to do this is actually no 

more than a few lines.

Listing 3-14. addExample function to retrain the model with 

custom inputs

const addExample = async classId => {

      const img = await webcam.capture();

      const activation = net.infer(img, "conv_preds");

      classifier.addExample(activation, classId);

      img.dispose();

};

The second line allows us to capture a single image from the webcam 

feed and transform it directly into a tensor, so it can be used with other 

TensorFlow.js methods right away.

The activation variable holds the value of the mobilenet model 

retrained with the new image tensor from the webcam, using one of its 

activation functions called “conv_preds”.

An activation function is a function that helps a neural network learn 

complex patterns in data.

The next step is to use the result of retraining the model and add it as 

an example to our classifier, with a class ID so it can map the new sample 

to its label.
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In machine learning, even though we usually think of labels as strings, 

for example, in our case “Right”, “Left”, and so on, during the training process, 

these labels are actually swapped with their index in an array of labels.

If our classes are ["up", "down", "left", "right"], the class ID 

when we train the model to recognize our head moving down would be 1 

as “down” is the second element in our array.

Finally, we dispose of the image tensor once it has been used, to free 

up some memory.

This addExample method needs to be triggered when we click one of 

our four buttons.

Listing 3-15. Looping through the buttons elements to attach an 

onclick event listener that will trigger the addExample function

for (var i = 0; i < buttons.length; i++) {

    if (buttons[i] !== predictButton) {

      let index = i;

      buttons[i].onclick = () => addExample(index);

    }

}

Considering that the buttons variable holds the buttons elements 

present in the DOM, we want to trigger our addExample function on all 

buttons except the one used to run the predictions.

We pass the button index to the function, so when we click the “Up” 

button, for example, the class ID will be 0.

This way, every time we click one of our four buttons, an example will 

be added to the classifier, with the corresponding class ID.

Once we have retrained our model a few times, we can click the predict 

button to run live predictions.
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Listing 3-16. Calling the runPredictions function when clicking the 

predict button

predictButton.onclick = () => runPredictions();

This runPredictions function will repeat similar steps to the ones 

explained earlier; however, instead of adding the examples to the KNN 

classifier, it will trigger the predictClass method to classify live input from 

the webcam, based on the training process we just went through.

Listing 3-17. The runPredictions function

async function runPredictions() {

    while (true) {

      if (classifier.getNumClasses() > 0) {

        const img = await webcam.capture();

        const activation = net.infer(img, "conv_preds");

         const result = await classifier.predictClass(activation);

        predictionParagraph.innerText = `

           prediction: ${classes[result.label]},

           probability: ${result.confidences[result.label]}`;

        img.dispose();

      }

      await tf.nextFrame();

    }

}

In the preceding sample, we wrap the logic inside a while loop 

because we want to continuously predict the input from the webcam; 

however, you could also replace it with an onclick event if you would like 

to get predictions only after clicking an element.
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If the classifier has been trained with new samples, we repeat the 

two steps of capturing an image from the webcam and using it with the 

mobilenet model.

Listing 3-18. Steps repeated between training the classifier and 

running the predictions

const img = await webcam.capture();

const activation = net.infer(img, "conv_preds");

We then pass this data in the predictClass method called on the KNN 

classifier to predict its label.

The result from calling this method is an object containing a 

classIndex, a label, and an object called confidences.

In this case, I was tilting my head to the right, so the classIndex and 

label come back with a value of 3, as the button to train the model to 

recognize this gesture was the last of 4.

The confidences object shows us the probability of the predicted 

label. The value of 1 means that the model is very confident that the 

gesture recognized is the correct one.

The probability value can vary between 0 and 1.

Figure 3-9. Output of the classification in the console
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After getting the result from the prediction, we dispose of the image to 

free up some memory.

Finally, we call tf.nextFrame() to wait for requestAnimationFrame 

to complete before running this code again and predicting the class of the 

next frame.

Here is how the code would work altogether.

Listing 3-19. Complete HTML code

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width, initial- 

scale=1.0"

     />

    <title>Transfer learning</title>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/

dist/tf.min.js"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow- 

models/mobilenet@1.0.0"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow- 

models/knn-classifier"></script>

  </head>

  <body>

    <main>

      <section class="content">

        <video class="webcam"></video>

        <section class="buttons">

          <button>Up</button>

          <button>Down</button>

          <button>Left</button>

          <button>Right</button>

        </section>
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        <section class="buttons">

          <button class="predict">Predict</button>

        </section>

        <p class="prediction"></p>

      </section>

    </main>

    <script src="index.js"></script>

  </body>

</html>

Listing 3-20. Complete JavaScript code

const webcamElement = document.getElementsByClassName("webcam")

[0];

const buttons = document.getElementsByTagName("button");

const predictButton = document.getElementsByClassName(" 

predict")[0];

const classes = ["up", "down", "left", "right"];

const predictionParagraph = document.getElementsByClassName 

("prediction")[0];

async function app() {

  const classifier = knnClassifier.create();

  const net = await mobilenet.load();

  const webcam = await tf.data.webcam(webcamElement);

  const addExample = async classId => {

    const img = await webcam.capture();

    const activation = net.infer(img, "conv_preds");

    classifier.addExample(activation, classId);

    img.dispose();

  };
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  for (var i = 0; i < buttons.length; i++) {

    if (buttons[i] !== predictButton) {

      let index = i;

      buttons[i].onclick = () => addExample(index);

    }

  }

  predictButton.onclick = () => runPredictions();

  async function runPredictions() {

    while (true) {

      if (classifier.getNumClasses() > 0) {

        const img = await webcam.capture();

        const activation = net.infer(img, "conv_preds");

         const result = await classifier.

predictClass(activation);

        predictionParagraph.innerText = `

            prediction: ${classes[result.label]},

            probability: ${result.confidences[result.label]}`;

        img.dispose();

      }

      await tf.nextFrame();

    }

  }

}

app();
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Using transfer learning allows us to retrain a model really fast to 

fit tailored inputs. In only a few lines of code, we are able to create a 

customized image classification model.

Depending on the new input data you feed it, you might have to add 

more or less new examples to get an accurate prediction, but it will always 

be faster than gathering a full new labelled dataset and creating your own 

machine learning model from scratch.
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CHAPTER 4

Text classification and 
sentiment analysis
In the previous chapter, we focused on using image data to learn more 

about machine learning and build an image classifier. In this chapter, we are 

going to talk about using text data, cover a few concepts of natural language 

processing, and build a few experiments around sentiment analysis.

4.1  What is sentiment analysis?
Sentiment analysis, also sometimes referred to as sentiment classification, 

opinion mining, or emotion AI, is the process of interpreting and 

categorizing emotions expressed in a piece of text to determine the overall 

sentiment of the person writing it – either positive, negative, or neutral.

It uses natural language processing to identify, extract, and study 

affective states and subjective information.

Natural language processing, or NLP, is a branch of artificial 

intelligence which objective is to program computers to process, analyze, 

and make sense of natural language data.

Giving computers the ability to understand the nuances of human 

language is a complicated task. It is not only about identifying and 

extracting keywords in a sentence, but about analyzing and interpreting 

the meaning behind those words, for example, being able to recognize 

figures of speech, detect irony, and so on.

https://doi.org/10.1007/978-1-4842-6418-8_4#DOI
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In this chapter, we will mainly focus on classifying pieces of text data 

into three categories: positive, negative, and neutral, as well as looking into 

toxicity detection.

Before diving into how to implement sentiment analysis in JavaScript 

with TensorFlow.js, let’s try to understand more about the mechanics of 

this technique.

4.2  How does natural language processing 
work?

The way we express ourselves carries a lot of contextual information. From 

our selection of words to our tone, the extent of our vocabulary, and the 

way we construct our sentences, human language is extremely complex 

but also rich enough to reveal a lot about us.

To allow computers to develop an understanding of language and its 

intricacies, natural language processing uses a few different techniques 

and algorithms. Let’s start by defining some concepts.

4.2.1  Common concepts – Basics of NLP
Before diving into how to implement some natural language processing in 

JavaScript, let’s cover some basic concepts.

 Bag-of-words

Bag-of-words is a model you will probably come across if you decide to do 

some extra research on NLP as it is quite commonly used.

It is a simplifying representation used to count the occurrence of all 

words in a piece of text, disregarding grammar.

Chapter 4  text ClassifiCation and sentiment analysis



69

This approach seems a bit simplistic as it does not take into 

consideration any semantic meaning and context, but it intends to add 

some weight to different terms in a text, based on how often they are used. 

This information is then used as features for training a classifier.

This process is also sometimes referred to as vectorization, as it aims 

to turn pieces of text into fixed-length vectors.

Concepts without examples can be difficult to understand, so let’s use the 

following four sentences to see how the Bag-of-words model would apply.

Let’s imagine we want to be able to detect if a piece of text is spam or 

not, and we have

• Win millions of dollars

• Win a Tesla

• Request for help

• Help millions of developers

The first step is to determine what is called our vocabulary or corpus, 

meaning the set of all words we’re going to work with, which in our case is

• Win

• Millions

• Of

• Dollars

• A

• Tesla

• Request

• For

• Help

• Developers
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Once we have our full vocabulary, we can start counting occurrences 

of each word.

Using this representation of the data, we’re able to create the following 

vectors:

• Win millions of dollars: [1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

• Win a Tesla: [1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

• Request for help: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0]

• Help millions of developers: [0, 1, 1, 0, 0, 0, 0, 0, 1, 1]

These vectors can then be used as features to train an algorithm.

The two first sentences (“Win millions of dollars” and “Win a Tesla”) 

could be labelled as “spam” and the two last (“Request for help” and “Help 

millions of developers”) as “non-spam”.

As a result, the dataset to be used to train an algorithm could look 

something like the following.

Table 4-1. Table representing the occurrences of each word in the 

preceding list

Document Win Millions Of Dollars A Tesla Request For Help Developers

Win millions 
of dollars

1 1 1 1 0 0 0 0 0 0

Win a Tesla 1 0 0 0 1 0 0 0 0 0

Request for 
help

0 0 0 0 0 0 1 1 1 0

Help 
millions of 
developers

0 1 1 0 0 0 0 0 1 1
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Considering that similar kinds of words are used in similar documents, 

the bag-of-words approach can help us determine the likelihood of a 

sentence being spam or not, based on our previous example dataset.

If the word “win” is often contained in a text labelled as spam, the 

probability of a new sentence such as “Win the trip of your dreams” being 

spam is higher than the probability of another sentence like “Feedback on 

performance”.

It is important to notice that the order of the words in the text does not 

matter; only the amount of times these words are used.

In real applications, the dataset should be much larger, containing a 

more diverse corpus, to increase the accuracy of the predictions.

 Tokenization

In natural language processing, two common types of tokenization include 

sentence tokenization and word tokenization.

Sentence tokenization, also called sentence segmentation, is the 

process of dividing a string into its component sentences. One way to do 

this is to split sentences whenever we see a full stop (.).

Table 4-2. Table representing the occurrences of each word in a 

spammy phrase vs. a non-spammy phrase

Label Win Millions Of Dollars A Tesla Request For Help Developers

Spam 1 1 1 1 0 0 0 0 0 0

Spam 1 0 0 0 1 0 0 0 0 0

Non-spam 0 0 0 0 0 0 1 1 1 0

Non-spam 0 1 1 0 0 0 0 0 1 1
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For example, a paragraph such as

“13th is a 2016 American documentary film by director Ava DuVernay. 

The film explores the “intersection of race, justice, and mass incarceration 

in the United States;” it is titled after the Thirteenth Amendment to the 

United States Constitution, adopted in 1865, which abolished slavery 

throughout the United States and ended involuntary servitude except as a 

punishment for conviction of a crime.”

would be split into the following two sentences:

 1. “13th is a 2016 American documentary film by 

director Ava DuVernay"

 2. “The film explores the “intersection of race, justice, 

and mass incarceration in the United States;” it 

is titled after the Thirteenth Amendment to the 

United States Constitution, adopted in 1865, which 

abolished slavery throughout the United States and 

ended involuntary servitude except as a punishment 

for conviction of a crime.”

Word tokenization, also called word segmentation, is the process of 

dividing a string into its component words. This can be used by splitting a 

sentence using a space character as the divider.

For example, our first sentence earlier, “13th is a 2016 American 

documentary film by director Ava DuVernay", would result in the following 

output.

Listing 4-1. Example array representing the output of word 

tokenization on the sentence “13th is a 2016 American documentary 

film by director Ava DuVernay”

["13th", "is", "a", "2016", "American", "documentary", "film", 

"by", "director", "Ava", "DuVernay"]
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 Text lemmatization and stemming

Text lemmatization and stemming are techniques to reduce inflectional 

forms of a word to a common base form.

As related words can have similar meanings, these tools help reduce 

them to a single one.

For example:

• “Eat”, “Eats”, “Eating” becomes “Eat”.

• “Computer”, “Computers”, “Computer’s” becomes 

“Computer”.

The result of this mapping would look something like this:

“They are all eating in front of their computers” => “They are all eat in 

front of their computer”.

This kind of technique is helpful for use cases where we would want to 

find results for more than an exact input, for example, with search engines.

When we execute a search, we generally are interested in getting 

relevant results, not only for the exact search terms that we used but also 

for other possible forms of these words.

For example, if I run a search using the words “Hike Europe”, I’m 

also interested in results that will have the word “hikes” and “hiking” or 

“hikers”, and so on.

 Stop words

Stop words are words that can add a lot of noise and are considered 

irrelevant in a text. They are filtered out before or after processing a text.

Examples of stop words include “and”, “the”, and “a”, but there is no 

definitive list as it will vary based on language and application.

After filtering out a text for stop words, a sentence like “They are 

meeting at the station tomorrow at 10am” would end up being [“They”, 

“are”, “meeting”, “station”, “tomorrow”, “10am”].
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As we can see, the sentence did not lose any meaning after removing 

the stop words.

As machine learning operations can be time-consuming, removing 

words that do not change the semantic meaning of a text can improve 

performance without impacting negatively the accuracy of the predictions.

4.3  Implementing sentiment analysis 
in TensorFlow.js

Now that we have covered some of the basics of natural language 

processing, let’s work on a couple of applications implementing sentiment 

analysis in JavaScript using TensorFlow.js.

4.3.1  Positive, negative, and neutral
As a first project, let’s build an application that can predict the overall 

sentiment of a piece of text and classify it between three categories: 

positive, negative, and neutral.

 Importing the model

The first thing you need to do, similar to the other projects in the previous 

chapter, is importing the TensorFlow.js library, either as a script tag or npm 

package.

Listing 4-2. Importing TensorFlow.js as a script tag in an HTML file

<script src='https://cdn.jsdelivr.net/npm/@tensorflow/tfjs'> 

</script>

Or

Listing 4-3. Importing TensorFlow.js as a package in a JavaScript file

const tf = require('@tensorflow/tfjs');
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 Loading the model

Then, we need to load the pre-trained model and its metadata. For this, we 

can create two different functions.

Listing 4-4. Function named loadModel to load the machine 

learning model

const loadModel = async () => {

   const url = `https://storage.googleapis.com/tfjs-models/tfjs/

sentiment_cnn_v1/model.json`;

  const model = await tf.loadLayersModel(url);

  return model;

};

Listing 4-5. Function named loadMetadata to load the machine 

learning metadata

const loadMetadata = async () => {

   const url = 'https://storage.googleapis.com/tfjs-models/tfjs/

sentiment_cnn_v1/metadata.json';

  const metadata = await fetch(url);

  return metadata.json();

};

 Predictions

Now that we have the main tools we need to run the prediction, we also 

need to write some helper functions that will turn our input text into 

vectors, like we talked about in the previous section of this chapter.

Input text cannot be fed to an algorithm as a string, as machine 

learning models primarily work with numbers, so let’s look into how to 

execute vectorization in JavaScript.
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To turn a string into a fixed-length vector, we need to start by breaking 

it down into an array which elements will be all the substrings.

Listing 4-6. Code sample to vectorize a string in JavaScript

const text = 'Hello world';

const trimmed = text

  .trim()

  .toLowerCase()

  .replace(/(\.|\,|\!|\?)/g, "")

  .split(" ");

This piece of code will turn a string like “I learned a lot from this talk” 

into [“i”, “learned”, “a”, “lot”, “from”, “this”, “talk”].

We start by calling the trim() function to remove potential whitespace 

at the beginning and end of the string. We then make everything 

lowercase, remove all punctuation, and split it into an array of substrings 

using the space character as separator.

Once this is done, we need to turn this array into an array of numbers 

using the metadata we loaded just previously.

This metadata is a JSON file with the sample data used to train the 

model we are loading into our application. It contains about 20,000 words.

The goal of this step is to map each word in our string to an index from 

the file, with the following code.

Listing 4-7. Code sample to map words to their index in the 

metadata file

const loadMetadata = async () => {

  const metadata = await fetch(

     "https://storage.googleapis.com/tfjs-models/tfjs/sentiment_

cnn_v1/metadata.json"

  );
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  return metadata.json();

};

const sequence = trimmed.map(async(word) => {

  const metadata = await loadMetadata();

  const wordIndex = metadata.word_index[word];

  if (typeof wordIndex === "undefined") {

    return 2; //oov index

  }

  return wordIndex + metadata.index_from;

});

What this code sample does is loop through the array of substrings 

we created previously and see if each element exists in the metadata. If it 

does, it sets the variable wordIndex to the index found in the metadata; 

otherwise, if the word from our input text was not found in the data used to 

train the model, it sets the value of wordIndex to 2.

This number 2 is going to be our index for out-of-vocabulary (OOV) 

words.

After this step, this sequence variable will look something like the 

following sample.

Listing 4-8. Sample output produced by the code earlier

[13, 12037, 6, 176, 39, 14, 740]

These numbers are the indices of each word in our metadata file. As we 

can see, the number 2 is not present, which means that each word in the 

sentence “I learned a lot from this talk” was present in the dataset used to 

train the model.

Before we can use this to run predictions and get the overall sentiment, 

we need to do one last step of transforming the data.

As explained previously, when training a machine learning model, you 

need to make sure that the data used has the same shape.
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For example, if you were working with images, you could not use 

images of different sizes (280x280 pixels, then 1200x800 pixels, etc.) in your 

dataset.

The same principle applies to text data. Our example text “I learned a 

lot from this talk” has a length of 7; however, our model has been trained 

with vectors which length were 100.

This value can be found in the metadata.json file as the value of the 

property max_len.

What this means is that the longest piece of string in the dataset used 

to train the model contained 100 words.

As we need to work with fixed-length vectors, we need to transform our 

vector of length 7 to a vector of length 100.

To do this, we need to write a function that will prepend a certain 

amount of 0s until the length of the vector equals 100.

After the code sample in Listing 4-7, you can write the following 

function.

Listing 4-9. Function to transform the data and create fixed-length 

vectors

const padSequences = (sequences, metadata) => {

  return sequences.map((seq) => {

    if (seq.length > metadata.max_len) {

      seq.splice(0, seq.length - metadata.max_len);

    }

    if (seq.length < metadata.max_len) {

      const pad = [];

      for (let i = 0; i < metadata.max_len - seq.length; ++i) {

        pad.push(0);

      }
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      seq = pad.concat(seq);

    }

    return seq;

  });

};

padSequences([sequence], metadata);

This function should be used for text data that is less than 100 words 

long, but what about strings which length exceeds 100?

The process for this case is kind of the opposite, we loop through the 

array of indices, and when we reach the maximum length, we slice the 

array and get rid of the rest.

After this process, the array we’re going to use to with our machine 

learning model should look something like the following.

Listing 4-10. Output array after prepending 0s to create a fixed-

length vector

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 12037, 6, 176, 39, 14, 740]

As we can see, we still have our seven indices representing our 

sentence “I learned a lot from this talk, but prepended with the correct 

amount of 0s to make this vector have a length of 100.

Now that we’ve transformed our data into the right vector, we can turn 

it into a tensor, using the tensor2d method and use that to predict the 

sentiment of our input text.
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Listing 4-11. Code sample to transform the vector into a tensor and 

generate predictions

const input = tf.tensor2d(paddedSequence, [1, metadata.max_len]);

const prediction = model.predict(input);

const score = prediction.dataSync()[0];

prediction.dispose();

return score;

This score will be a float number between 0 and 1. The closest the 

score is to 0, the more negative it is predicted to be, and the closest to 1, the 

more positive.

The score for our input text “I learned a lot from this talk” is 

0.9912545084953308, which means that the sentiment predicted for it is 

“positive”.

A sentence like “This is really bad” produces a score of 

0.007734981831163168, which is “negative”.

 Complete example

If we want to put this code altogether in an application that would gather 

input text from users, this is what it could look like.

If we assume we have a simple input field with a button in an HTML 

file, like so.

Listing 4-12. HTML tags to get text input from users and a button

<label for="text">Text</label>

<input type="text" name="text" />

<button>Predict</button>

The JavaScript code to run sentiment analysis on the text written by the 

user would be as follows.
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Listing 4-13. JavaScript code to process user input and run 

predictions

const loadMetadata = async () => {

  const metadata = await fetch(

     "https://storage.googleapis.com/tfjs-models/tfjs/sentiment_

cnn_v1/metadata.json"

  );

  return metadata.json();

};

const loadModel = async () => {

   const url = `https://storage.googleapis.com/tfjs-models/tfjs/

sentiment_cnn_v1/model.json`;

  const model = await tf.loadLayersModel(url);

  return model;

};

const padSequences = (sequences, metadata) => {

  return sequences.map((seq) => {

    if (seq.length > metadata.max_len) {

      seq.splice(0, seq.length - metadata.max_len);

    }

    if (seq.length < metadata.max_len) {

      const pad = [];

      for (let i = 0; i < metadata.max_len - seq.length; ++i) {

        pad.push(0);

      }

      seq = pad.concat(seq);

    }

    return seq;

  });

};
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const predict = (text, model, metadata) => {

  const trimmed = text

    .trim()

    .toLowerCase()

    .replace(/(\.|\,|\!|\?)/g, "")

    .split(" ");

  const sequence = trimmed.map((word) => {

    const wordIndex = metadata.word_index[word];

    if (typeof wordIndex === "undefined") {

      return 2; //oov_index

    }

    return wordIndex + metadata.index_from;

  });

  const paddedSequence = padSequences([sequence], metadata);

   const input = tf.tensor2d(paddedSequence, [1, metadata.max_

len]);

  const predictOut = model.predict(input);

  const score = predictOut.dataSync()[0];

  predictOut.dispose();

  return score;

};

const getSentiment = (score) => {

  if (score > 0.66) {

    return `Score of ${score} is Positive`;

  } else if (score > 0.4) {

    return `Score of ${score} is Neutral`;

  } else {

    return `Score of ${score} is Negative`;

  }

};
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const run = async (text) => {

  const model = await loadModel();

  const metadata = await loadMetadata();

  let sum = 0;

  text.forEach(function (prediction) {

    perc = predict(prediction, model, metadata);

    sum += parseFloat(perc, 10);

  });

  console.log(getSentiment(sum / text.length));

};

window.onload = () => {

  const inputText = document.getElementsByTagName("input")[0];

  const button = document.getElementsByTagName("button")[0];

  button.onclick = () => {

    run([inputText.value]);

  };

};

In this code sample, I am using the user’s input as a single string that 

will be transformed and used for sentiment analysis. However, if you 

wanted to split a paragraph into different sentences and run sentiment 

analysis on each sentence separately, you would need to start by creating a 

function that breaks the paragraph into an array of sentences.

If you decide to implement this and try sentiment analysis on various 

pieces of text, you might realize that the accuracy of the prediction is not 

always the best.

For example, a sentence, like “I really hate this”, has a score of 

0.9253836274147034, meaning its sentiment is predicted to be “positive”, 

which seems incorrect.
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This is mainly due to the fact that the data used to train the model is a 

set of 25,000 movie reviews from IMDB, an online database of information 

related to films, TV shows, and so on.

Even though, to humans, a sentence like “I really hate this” seems 

pretty clearly negative, the machine learning model only looks at the 

occurrence of every word in the sentence, compared to what it has learned 

from the training data.

If the words “i”, “really”, and “this” were found in more sentences and 

these were labelled as “positive”, it overweighs the fact that the word “hate” 

looks to us as a negative sentiment. This word was probably used in less 

sentences in the dataset.

All this is to remind you to never rely entirely on predictions generated 

by a machine learning model. Even though algorithms are much better 

than humans at processing large amounts of data and extracting patterns 

from it, predictions should be used as a way to augment the way we make 

decisions, not replace it completely.

If you wanted to improve these predictions, you could look for other 

open source datasets or pre-trained models used for sentiment analysis.

4.3.2  Toxicity Classifier
Now that we looked into implementing a sentiment analysis classifier, 

let’s use something a little different that will produce more specified 

predictions.

In this subchapter, we’re going to use TensorFlow’s Toxicity Classifier 

to label pieces of text based on their type of toxicity.

The different labels are

• Insult

• Identity attack

• Obscene
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• Severe toxicity

• Sexual explicit

• Threat

• Toxicity

 Importing the model

To get started using this model, we need to import the TensorFlow.js 

library and the pre-trained model for toxicity recognition.

Listing 4-14. Import TensorFlow.js and the Toxicity Classifier in 

your HTML file using script tags

<script src='https://cdn.jsdelivr.net/npm/@tensorflow/tfjs'></

script>

<script src='https://cdn.jsdelivr.net/npm/@tensorflow-models/

toxicity'></script>

Or

Listing 4-15. Install and import TensorFlow.js and the Toxicity 

Classifier in your JavaScript file

// In your terminal

npm install @tensorflow/tfjs @tensorflow-models/toxicity

// In your JavaScript file

const toxicity = require('@tensorflow-models/toxicity');

 Predictions

After importing the tools we need, the code to run the prediction on a 

piece of text is actually pretty small!
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We need to load the model and call the classify() function with 

the sentences we want to run the predictions on as argument, like the 

following.

Listing 4-16. Loading the model and classifying new sentences

toxicity.load().then((model) => {

   const sentences = ['this is really the most useless talk I 

have ever watched.'];

  model.classify(sentences).then((predictions) => {

    return predictions;

  });

});

For a sentence like the one shown in the preceding code sample, the 

predictions return as the following array.

At first, you could think that it means the sentence “this is really the 

most useless talk I have ever watched” has been predicted to belong to the 

“identity_attack” label; however, that’s not it.

Figure 4-1. Array of predictions returned by the preceding code 
sample
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The way the predictions come back with this particular model is as an 

array of objects that contain data for each label, ordered by alphabetical order.

It can be a bit confusing, as other models used with TensorFlow.js 

usually produce predictions ordered by score.

To get a better understanding, let’s get a deeper look into the 

predictions array that we logged earlier.

Figure 4-2. Detailed view of the array of predictions returned by the 
preceding code sample
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This screenshot represents the four first entries in the predictions 

array. As we can see, they are ordered alphabetically by label.

To understand which label is the correct one for the input text, we need 

to look at the “probabilities” array and the “match” value.

The probabilities array contains two values, the first representing 

the probability of the label being falsy, meaning the input text not being 

classified with that label, and the second value representing the probability 

of the label being truthy, meaning the input text is classified as being this 

type of toxic content.

The “match” value is a more straightforward representation. If its value 

is “true”, it means the text corresponds to that label; if “false”, it doesn’t.

Sometimes, the value of “match” is set to “null”. This happens when 

neither of the predictions exceeds the threshold provided.

By default, this threshold is not required and has a value of 0.85. 

However, it can be set to another value and passed to the model as an 

argument, like so.

Listing 4-17. Passing a threshold as argument to the model

const threshold = 0.7;

toxicity.load(threshold).then((model) => {

  const sentences = [

    "This is really the most useless talk I have ever watched.",

  ];

  model.classify(sentences).then((predictions) => {

    return predictions;

  });

});

This threshold is used to determine the value of the “match” property.

If the first value in the “probabilities” array exceeds the threshold, 

“match” is set to “false”; if instead the second value exceeds the threshold, 
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“match” is set to true. And, as explained before, if none of the probabilities 

values exceed the threshold, “match” is set to “null”.

Labels can also be passed as another argument to the model if you only 

care about certain ones and not all 7.

For example, if we wanted to detect only text that would be classified 

with the label “identity_attack”, we would be passing this label as well.

Listing 4-18. Passing a label as argument to the model

const threshold = 0.7;

// Labels have to be passed as an array, even if you only pass 

a single one.

toxicity.load(threshold, ["identity_attack"]).then((model) => {

  const sentences = [

    "This is really the most useless talk I have ever watched.",

  ];

  model.classify(sentences).then((predictions) => {

    return predictions;

  });

});

Providing the labels you are only interested in will return filtered 

predictions.

Figure 4-3. Predictions array returned after passing a specific label
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Similarly to the sentiment classifier built in the previous section of this 

chapter, the accuracy of the predictions depends a lot on the data used to 

train the model.

TensorFlow.js’s toxicity model was trained on a dataset of about 2 

million user-generated online news comments published from 2015 to 

2017.

An interesting aspect of this is that datasets are often originally labelled 

by humans, meaning people have to go through all the entries and label 

each of them with a corresponding label based on a set of labels provided.

In the case of the data used for the toxicity model, it means that 

people had to go through 2 million pieces of text, and label each of 

them with the label they thought would be the closest to the type of 

toxicity the comment belonged to, based on the labels “identity_attack”, 

“insult”, “obscene”, “severe_toxicity”, “sexual_explicit”, “threat”, and 

“toxicity”.

One potential issue with this is that different people have different 

opinions about what they might classify as an “insult” or not, or what they 

would label as “toxicity” instead of “severe_toxicity”, which adds a certain 

level of bias into the data that is going to be used to train the model.

So, not only the accuracy of the prediction depends on the quality of 

the data gathered (the online comments), it also depends on how they 

were labelled.

If you are in a position where you can inspect the data that was used to 

train a model you are using in your application, I would really recommend 

to do it.

Now that we went through a couple of examples of what can be done 

with sentiment analysis with TensorFlow.js, let’s look into some potential 

applications.
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4.4  Applications
A lot of the content we produce and share is text content. From news 

articles and blog posts to comments, chatbots interactions, social media 

updates, and so on, this vast amount of text data could offer some really 

interesting new opportunities, if used with machine learning.

4.4.1  Cognitive assistants and computer therapy
Either it be in the form of chatbots or voice assistants like Siri, certain 

conversational agents could benefit from integrating sentiment analysis.

In the past few years, some companies have tried to develop systems to 

provide psychological help and coaching in the form of chatbots.

These companies focus on offering tailored advice and support in 

the aim of allowing people to do some kind of DIY cognitive behavioral 

therapy (CBT).

CBT uses structured exercises to encourage a person to question and 

change their habits of thought. This step-by-step format seems well suited 

for chatbots.

Companies, like Orexo, Woebot, Pear, and Wysa, personalize their 

services to each person based on their answers to questions.

Orexo focuses on helping users change their drinking habits by 

asking a set of questions about current behavioral patterns and tailoring a 

program based on the answers provided.

Woebot, a chatbot built on Stanford research, aims at making mental 

healthcare accessible to everyone, by providing personalized expert- 

crafted tools to learn about yourself and improve your mood whenever you 

need it.
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Pear Therapeutics is a company at the intersection of biology and 

software that aims at creating the next generation of therapeutics. It has 

released two digital services called reSET and reSET-0 that intend to 

provide support and CBT to people with substance abuse disorders.

Figure 4-4. Screenshot of the application Woebot
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Wysa, an AI-based “emotionally intelligent” chatbot, provides self-care 

exercises organized in packs to help deal with issues such as managing 

your mood, overcoming loneliness, improving sleep, and so on. Unlike 

other applications, it also gives you the opportunity to pay for a real session 

with a professional therapist within the app.

Figure 4-5. Screenshot of the home screen of the application 
Wysa
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Figure 4-6. Screenshot of the self-care packs found in the application 
Wysa
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Some of these applications even got approved by the FDA, the Food 

and Drug Administration in the United States.

Another one of them is a game called EndeavorRx by Akili Interactive, 

which trials showed it can help children with ADHD (attention deficit 

hyperactivity disorder) improve their level of attention. This game was 

built based on research to deliver sensory and motor stimuli to selectively 

target and activate specific cognitive neural systems in the brain.

Even though these applications do not replace face-to-face 

interactions with a therapist, one of their benefits is their constant 

availability. Getting a daily consultation with a real doctor would be very 

costly and time-consuming; however, a digital one on your phone can 

make it easier to keep track of your progress and provide help in urgent 

moments.

Besides, there are probably not enough clinicians available to help the 

amount of people in need. For example, the chatbot Woebot exchanges 

about 4.7 million messages with people per week; there just wouldn’t be 

enough practitioners to handle that.

Even though there is potential in these self-help digital services, it is 

very important to remember that the technology is not perfect.

As machine learning algorithms get better at analyzing and 

understanding all information contained in the way we communicate, 

there can only be improvements in the future, but for now, a lot of these 

applications have limited abilities and should be used with that in mind.

If this is a space you are interested in, I would highly recommend to 

try a few of these applications to get a better sense of the features and 

interactions currently available.

4.4.2  Social media monitoring
Another interesting opportunity is in improving users’ interactions on 

social media by providing some kind of monitoring tool.
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If you are regularly using any social media platform like Facebook or 

Twitter, you are probably familiar with the toxicity of some of the content 

users decide to share, either in the form of status updates or comments on 

your posts.

This type of toxic interactions can have a negative psychological 

impact on people, which could be avoided using sentiment analysis.

At the moment, if anyone is interacting in a toxic way with you on a 

platform, you do not really have the option to avoid it. You might decide to 

ignore it, but only after you’ve seen the content at least once, which often 

already impacts you negatively.

However, if every piece of content shared was first run by a machine 

learning model to detect the level of toxicity, social media platforms could 

provide warnings about the content the user is about to see, and let them 

decide if they want to view it or not.

The same way content described as “adult content” is often hidden 

behind some kind of warning, platforms could empower users to make 

their own decisions.

More recently, Twitter has released warnings on tweets considered 

to be potentially spreading incorrect information about the disease 

COVID-19.
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Users could still click “View” if they wanted to read the content, 

but were warned that it was potentially harmful, as it was going against 

guidance from public health experts.

Additionally, this technique could also be used to attempt to prevent the 

sharing of toxic content by providing a warning to the person about to post.

When using social media platforms, you could imagine an icon next to 

the usual “Add emojis” or “Add pictures“ icon that would get into an active 

state if the tweet a user is about to send, or post they are about to share, 

was classified as being toxic. This would not stop anyone from sharing but 

would provide people with an opportunity to take a step back and think 

twice about the impact of their words on other people.

Both of these opportunities do not completely resolve the issue of toxic 

content on the Internet but use machine learning and sentiment analysis 

as a help to make the Web a safer place.

Figure 4-7. Examples of warnings displayed on tweets that were 
potentially spreading wrong information. Source: www.vox.com/
recode/2020/5/11/21254889/twitter-coronavirus-covid- 
misinformation-warnings-labels
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4.4.3  Automation tools
There are some situations in our professional lives where some tasks are 

still done manually that could be automated using sentiment analysis, to 

free up some time to focus on more interesting challenges. An example of 

this is around product feedback from customers.

If you work for a product company, you might be familiar with asking 

your customers for feedback on the product you are building.

This feedback is often stored as a spreadsheet of data, stored in Google 

Sheets, databases, or other platform.

The company’s employees then usually go through all this data to 

understand customers’ needs, complaints, and so on. These tasks can take 

a lot of time; however, sentiment analysis could be used to apply a first 

filter to the data and group them by feedback that seems positive, negative, 

and neutral.

People should still read the data manually to get a better 

understanding of customers’ thoughts, but it could give an idea of the 

overall sentiment around the product.

Another type of survey where this approach could be useful is in 

internal company surveys.

When the leadership of a company wants to know how employees are 

feeling about their work, the culture, or their overall experience, a survey is 

shared to collect feedback.

Some surveys are rather simple with mainly check boxes where people 

answer questions or statements by selecting “Strongly agree”, “Agree”, 

“Disagree”, or “Strongly disagree”; however, some other surveys give 

employees an opportunity to express themselves further, in their own words.

The latter would be a good use case for sentiment analysis. After collecting 

feedback from everyone, all the data could be fed to a sentiment analysis 

model to determine the overall feeling of employees toward the company.

Similarly to the previous example of product surveys, the feedback 

should still be read and analyzed manually, but getting a first insight over the 
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data may influence the first decisions. If the prediction comes back as overly 

negative, it is probably important to act on the feedback as soon as possible 

to avoid getting to the point where employees decide to leave the company.

Finally, another scenario where sentiment analysis could be used for 

automation is in helping a support team triage tickets based on the toxicity 

of customer’s complaints. This approach could also be used by developer 

experience teams that usually have to keep track of what is said about a 

company on social media.

Using a Toxicity Classifier or sentiment analysis classifier to run an 

initial check on the data can help prioritize which customers’ feedback 

should be dealt with, with more urgency.

All in all, using sentiment analysis as an automation tool does not 

replace entirely the work that should be done by people, it only provides a 

help to gain some early insights and guide decisions.

In addition to sentiment analysis, other types of techniques are also 

available to gain a deeper understanding of text data.

4.5  Other types of text classification tools
Even though sentiment analysis provides some useful information about 

data collected, it can also be paired with other types of text classification 

tools to generate better predictions and extract more meaningful insights.

4.5.1  Intent analysis
Intent analysis, also called intent classification, goes a step further by 

trying to analyze and understand the user’s intention behind a message 

and identify whether it relates to an opinion, news, marketing, query, 

complaint, suggestion, and so on. It also helps categorize customers’ 

intents by topics such as Purchase, Downgrade, Demo request, and so on.

To do this, a model needs to be trained with existing data collected 

from users and labelled with the different intents we would like to use for 

future predictions.
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It works a bit similarly to the Toxicity Classifier I talked about previously 

in this chapter, but instead of using labels such as “severe_toxicity” or 

“threat”, the model would be trained with labels such as “Purchase”, “Need 

for information”, “Cancellation”, and so on.

Feeding this labelled data from real customers’ comments, requests, 

and complaints to an algorithm would allow it to find patterns of 

vocabulary used, semantics, arrangements of words in a sentence, used by 

people when expressing similar intents.

4.5.2  Named Entity Recognition
Named entity recognition (NER), also known as entity identification, entity 

chunking, or entity extraction, extracts entities such as people, locations, 

organizations, and dates from text.

For example, if we take the following sample paragraph from the Rosa 

Parks’ Wikipedia page:

Rosa Louise McCauley Parks (February 4, 1913 – October 24, 
2005) was an American activist in the civil rights movement 
best known for her pivotal role in the Montgomery bus boy-
cott. The United States Congress has called her "the first lady 
of civil rights" and "the mother of the freedom movement.”

—Quote source: https://en.wikipedia.org/wiki/Rosa_Parks

Named entity recognition would allow us to extract and classify the 

following terms:

• Person: Rosa Louise McCauley Parks

• Location: Montgomery, United States

• Date: February 4, 1913, October 24, 2005

• Organization: United States Congress

Chapter 4  text ClassifiCation and sentiment analysis

https://en.wikipedia.org/wiki/Activism
https://en.wikipedia.org/wiki/Civil_rights_movement
https://en.wikipedia.org/wiki/Montgomery_bus_boycott
https://en.wikipedia.org/wiki/Montgomery_bus_boycott
https://en.wikipedia.org/wiki/United_States_Congress
https://en.wikipedia.org/wiki/Rosa_Parks


101

NER models have a wide range of applications including automatic 

summarizing of resumes to aim at simplifying the recruitment process 

by automatically scanning a huge amount of documents and shortlist 

candidates based on terms found in them.

4.5.3  Text summarization
As the name indicates, text summarization is a technique usually used to 

create an accurate summary that captures the main pieces of information 

in a longer text.

These summaries allow people to navigate content more effectively 

by reducing reading time and helping in the selection process of research 

documents.

The goal of this technique is not only to capture the main words of a 

document and generate a shorter sentence, but also to create something 

that reads fluently as a new stand-alone piece of content. It should result in 

a summary that is as good as those a human would write.

Examples of day-to-day text summarization we are already familiar 

with include

• News headlines

• Notes from meetings

• Synopses

• Biographies

For automatic text summarization using machine learning, there exist 

two approaches: extractive and abstractive.

Extractive text summarization is the process of selecting phrases in a 

source document to generate a summary. It involves ranking the relevance 

of phrases in the source and only selecting the ones that are the most 

relevant to the meaning of the document.
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Abstractive text summarization involves generating brand-new 

phrases that convey the most critical information from the source 

document. It uses advanced natural language processing techniques to 

interpret and examine the text and produce shorter sentences in a new 

way.

4.5.4  Question Answering with TensorFlow.js
Question Answering is a discipline within the field of natural language 

processing that is concerned with building systems that automatically 

answer questions posed by humans in a natural language.

A machine learning model takes a passage and a question as input 

and is able to return a segment of the passage that is likely to answer the 

question asked, as output.

In the next few pages, we are going to use the MobileBERT model, a 

lightweight version of the BERT (Bidirectional Encoder Representations 

from Transformers) model from Google, to build a system capable of 

answering questions submitted by humans based on a set of paragraphs.

 Importing the model

To set up our project, we need to start by importing TensorFlow.js and the 

model.

Listing 4-19. Importing TensorFlow.js and the QNA model in an 

HTML file

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"> 

</script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

qna"></script>

Or
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Listing 4-20. Importing TensorFlow.js and the QNA model as 

package in a JavaScript file

const qna = require('@tensorflow-models/qna');

If you decide to use it as a NPM module, you do not need to import 

the @tensorflow/tfjs library; however, you will need to make sure you have 

installed the peer dependencies for tfjs-core and tfjs-converter.

 Loading the model

Once the model is imported, we need to load it in our application. Two 

options are available to do this.

First, you can load it without providing a config object.

Listing 4-21. Default way to load the model

const model = await qna.load();

This way of loading the model is the one you should probably use if 

you want to use Google’s Question Answering model hosted on the Google 

Cloud Platform (GCP) provider.

If you live in an area or country that does not have access to the model 

hosted on GCP, you can provide a configuration object that will contain the 

custom URL of the model hosted on your own servers.

Listing 4-22. Loading the model using custom configurations

const config = { modelUrl: "https://yourown-server/qna/model.

json" };

const customModel = await qna.load(config);

These two ways of loading the model will return a model object that we 

can call methods on to predict our answers.
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 Predictions

Generating answers is done using the findAnswers() method on the 

model object. This method accepts two arguments: the first one is the 

question the user would like to ask, and the second is the associated 

passage that content needs to be extracted from.

Listing 4-23. Generating predictions

const answers = await model.findAnswers(question, passage);

These two parameters need to be strings.
The answers variable that will hold the results of the predictions will be 

an array of elements with the following shape:

[

  {

    text: "Angela Davis",

    startIndex: 1143,

    endIndex: 1156,

    score: 0.8380282521247864

  }

]

The text property represents the answer to the question the person 

would have asked. The score is the confidence level for the prediction. The 

higher it is, the more confident the model is that this answer is correct. The 

startIndex and endIndex represent the indices of the starting and ending 

character where the expression was found in the passage.

 Complete example

Let’s put all these code samples together, reuse one of our examples from 

the previous sections, and ask questions about Rosa Parks.
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Listing 4-24. HTML code

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

    <title>Question Answering</title>

  </head>

  <body>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/qna"></script>

    <script src="index.js"></script>

  </body>

</html>

Listing 4-25. JavaScript code in the index.js file

const init = async () => {

   const passage = "Rosa Louise McCauley Parks (February 4, 

1913 – October     24, 2005) was an American activist in the 

civil rights

     movement best known for her pivotal role in the Montgomery 

bus boycott. The United States Congress has called her 'the 

first lady of civil rights' and 'the mother of the freedom 

movement'";

  const question = "When was Rosa born?";

  const model = await qna.load();
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  const answers = await model.findAnswers(question, passage);

  console.log(answers);

};

init();

This code will log the following output in your browser’s console.

Figure 4-8. Prediction output in the browser’s console to the question 
“When was Rosa born?”

Chapter 4  text ClassifiCation and sentiment analysis



107

As we can see in the preceding screenshot, the answers come back as 

an array of five elements. The one with the highest score is “February 4, 

1913”, which is the correct answer to the question “When was Rosa born?”!

Also, if we observe the subsequent predictions, they are all somewhat 

correct as they contain either a part of the birth date or the birth and death 

dates.

We could think maybe we just got lucky on that one, so let’s try another 

question, for example: “Who was Rosa Parks?”.

When asking this question, we get the following answers.

This time, our answers array contains only two objects. However, these 

predictions are correct!

An interesting aspect of this is that our question mentioned “Rosa 

Parks”, whereas our passage mentioned her full name “Rosa Louise 

McCauley Parks”, and the model was still able to understand who our 

question was about.

Figure 4-9. Prediction output in the browser’s console to the question 
“Who was Rosa Parks?”
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This is pretty impressive and has huge potential, but, as with every 

machine learning model, it has its limits.

For example, when changing the question to “How was Rosa Parks 

called?”, expecting the answers “the first lady of civil rights” or “the mother 

of the freedom movement”, the predictions array came back empty, 

meaning the model could not find answers to this question in the passage.

However, when modifying the question a little bit to be more precise 

(“What did the United States Congress call Rosa Parks?”), the model 

managed to provide the right answers – the first one being this.

Unfortunately, asking the question this way would have probably 

required a certain kind of knowledge from the user. A person unfamiliar with 

the details of Rosa Parks’ life would have most likely asked the question in a 

similar format to “What was Rosa Parks called?”, which returned no answer.

 Building an interactive education tool

In the preceding code samples, we only used this model to log the results 

in the browser’s developer tools. However, let’s use this code to build an 

interactive education tool, in which users would be able to learn about 

historical figures, using Question Answering.

For this project, to make it simpler, we’re going to store data about 

a few preselected people in our code base as JSON files. If you are not 

familiar with it, JSON stands for JavaScript Object Notation and refers to a 

file format for storing data.

Figure 4-10. First prediction output in the browser’s console to the 
question “What did the United States Congress call Rosa Parks?”
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If you wanted to go a step further, you could try to use the MediaWiki 

API to let users request for any public figure they would want and fetch 

data dynamically.

The following application is going to have information about three 

historical figures, let the user decide which one they would like to learn 

more about, and provide an input field to ask different questions to display 

the answer with the highest probability, predicted by the machine learning 

model.

The final state of this project is going to contain three screens and look 

something like this.

Figure 4-11. Home page of the project
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Figure 4-12. Page to select the public figure to learn more about

Figure 4-13. Page to ask questions and display the best answer predicted
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As you may have noticed, I kept the design very minimal because 

I want to focus on the functionality. The important takeaway from 

this project is how to create a quick user interface using the Question 

Answering model.

Now that you have a better idea of what we are about to build, let’s dive 

into the different features and code samples.

Step 1: Loading page

Loading a pre-trained machine learning model into your application will 

always have an impact on performance as they tend to be quite heavy. 

As a result, it is important to think in advance about what kind of user 

experience you want to create to improve the perceived performance.

Figure 4-14. Home page of the project
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This could include loading the model in the background early on, so by 

the time the user gets to the experience, it is loaded and ready to be used; 

or providing a loading animation to indicate that the user needs to wait for 

the interface to be usable.

The latter is not the best option as the user clearly is forced to wait 

before being able to interact with the experience; however, in the case of 

this project, this is the method we are going to use, as the only feature of 

the application is the interaction with the model.

To display this loading state, we have a button element in our HTML 

file that has a default state of disabled, to prevent the user from trying to 

run predictions before the model is available.

Listing 4-26. HTML code sample to show some intro text and a 

button with initial loading state

<section class="intro">

   <h1>Hidden figures</h1>

   <h3>

      Using machine learning, learn about 3 NASA engineers by 

asking questions about their lives!

   </h3>

   <button disabled>Loading...</button>

 </section>

Then, in the JavaScript file, we can start loading the model as soon as 

the page loads and change the state of the button once the model is ready.

Listing 4-27. JavaScript code sample to load the model and update 

the state of the button when the model is loaded

let model;

const loadModel = async () => await qna.load();

const init = async () => {
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  model = await loadModel();

  const startButton = document.querySelector(".intro button");

  startButton.removeAttribute("disabled");

  startButton.innerHTML = "Start";

};

init();

The preceding code sample shows that, as soon as the loadModel 

function has finished loading the model, we remove the disabled state 

of the button to make it interactive and change its content to “Start” to 

indicate that the user can start the experience.

At this stage, once the user clicks the start button, we hide this content 

to show the three options available.

Step 2: Selection page

Figure 4-15. Page to select the engineer to learn more about
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For the purpose of this small demo, I hard-coded the name of the three 

engineers in the button elements in the HTML file; however, if you 

were building something with more entries, or if they were dynamically 

generated, you could also replace the content of the buttons dynamically 

in JavaScript.

Listing 4-28. HTML code sample with buttons containing the name 

of the three NASA engineers

<section class="selection">

   <h1>Who would you like to learn about?</h1>

   <section class="buttons">

     <button class="figure">Katherine Johnson</button>

     <button class="figure">Dorothy Vaughan</button>

     <button class="figure">Mary Jackson</button>

   </section>

</section>

In our JavaScript file, we need to add an event listener for clicks on 

these buttons and fetch the JSON data.

To avoid loading all content at once, I created a JSON file for each 

person, so that the code is going to fetch only the data the user has asked 

for.

As a result, I have three JSON files that I named:

• dorothyVaughan.json

• katherineJohnsons.json

• maryJackson.json

This way, when the user clicks one of the three buttons, the following 

code will execute the fetching and prepare for the following prediction 

page.
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Listing 4-29. JavaScript code to fetch data when clicking one of the 

buttons

const engineers = {

  "Katherine Johnson": "katherineJohnson",

  "Dorothy Vaughan": "dorothyVaughan",

  "Mary Jackson": "maryJackson",

};

figureButtons.forEach(button => {

  button.onclick = e => {

    const dataFile = engineers[e.target.textContent];

    fetch(`${window.location.href}${dataFile}.json`)

      .then(response => response.json())

      .then(data => {

        figureData = data;

        const label = document.getElementsByTagName("label")[0];

         label.innerHTML = `What would you like to know about 

${e.target.textContent}?`;

      });

  };

});

In the preceding code sample, I started by creating an object to map 

the names displayed in the UI to the names of the associated JSON file.

Then, for each of the three buttons, I listen for click events, look at the 

content of the button clicked to get the name of the JSON file, and use the 

fetch function to get the data and store it in a figureData variable.

I also use the name of the person the user has chosen, to display it in 

the title “What would you like to know about…”.
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There is a bit more code related to showing and hiding HTML elements 

as we go through the pages, but I will share the complete code for this 

project at the end of this chapter.

Now that we know which person the user is interested in knowing 

more about, and we’ve fetched the related data, let’s move on to the 

prediction page.

Step 3: Predictions

Our final page has an input field, a button to run the predictions, and a 

paragraph that outputs the answer.

Figure 4-16. Page to ask questions and display the best answer 
predicted
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Listing 4-30. HTML code sample to display an input field and a 

section to display the prediction

<section class="question">

  <label for="question"></label>

  <input type="text" name="question" placeholder="Who was she?" />

  <button class="ask">Ask</button>

</section>

<section class="answer-block">

  <p class="input-question"></p>

  <p class="answer"></p>

</section>

In our JavaScript file, we need to listen to click events on the button, 

get the value of the input entered by the user, send it alongside the data 

fetched as parameters to the method to get the answers from the model, 

and display the first answer on the page.

The following is the code sample to do this.

Listing 4-31. JavaScript code sample to get the input string, feed it 

to the model, and display the output

const askButton = document.getElementsByClassName("ask")[0];

askButton.onclick = async () => {

  inputQuestion = document.getElementsByTagName("input")[0].value;

   const answers = await model.findAnswers(inputQuestion, 

figureData);

  displayAnswer(answers);

  document.getElementsByTagName("input")[0].value = "";

};
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const displayAnswer = (answers) => {

  const inputQuestionElement = document.querySelector(

    ".answer-block .input-question"

  );

   const paragraphElement = document.

getElementsByClassName("answer")[0];

  if (!answers[0]) {

    inputQuestionElement.innerHTML = "";

     paragraphElement.innerHTML = `Mmmm I don't seem to have the 

answer to this question 🤔`;

    return;

  }

   inputQuestionElement.innerHTML = `The answer to your question 

"${inputQuestion}" is:`;

  paragraphElement.innerHTML = `${answers[0].text}`;

   document.getElementsByClassName("answer-block")[0].style.

display = "block";

};

In the first part of the preceding code, we listen to click events, get the 

input question, and call the findAnswers method with the question and 

the figureData variable we used in the previous section to store the data 

fetched from the JSON file.

We then call a function called displayAnswer to which we pass the 

answers returned by the model, to display it on the page.

As mentioned a bit earlier in this chapter, sometimes, the model is not 

going to find answers to a question and will return an empty array. We 

need to handle this case first, and here, we display a generic message.

Then, if the model has found answers, we display the first one in the 

array as it is the one with the highest probability to be correct.

And that’s it!

Chapter 4  text ClassifiCation and sentiment analysis



119

In less than 100 lines of JavaScript, you can create a small interactive 

project allowing users to ask questions and learn about different topics 

using machine learning!

If you want the complete code sample for this, you can find the HTML 

and JavaScript in the following listing.

Listing 4-32. Complete HTML code

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

    <title>Interactive education tool</title>

    <link rel="stylesheet" href=" styles.css" />

  </head>

  <body>

    <section class="intro">

      <h1>Hidden figures</h1>

      <h3>

         Using machine learning, learn about 3 NASA engineers by 

asking questions about their lives!

      </h3>

      <button disabled>Loading...</button>

    </section>

    <main>

      <section class="selection">

        <h1>Who would you like to learn about?</h1>

        <section class="buttons">

          <button class="figure">Katherine Johnson</button>

          <button class="figure">Dorothy Vaughan</button>
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          <button class="figure">Mary Jackson</button>

        </section>

      </section>

      <section class="question">

        <label for="question"></label>

         <input type="text" name="question" placeholder="Who was 

she?" />

        <button class="ask">Ask</button>

      </section>

      <section class="answer-block">

        <p class="input-question"></p>

        <p class="answer"></p>

      </section>

    </main>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/qna"></script>

    <script src="index.js"></script>

  </body>

</html>

Listing 4-33. Example JSON data for the file katherineJohnson.json

"Dorothy Johnson Vaughan (September 20, 1910 – November 10, 

2008) was an American mathematician and human computer who 

worked for the National Advisory Committee for Aeronautics 

(NACA), and NASA, at Langley Research Center in Hampton, 

Virginia. In 1949, she became acting supervisor of the West 

Area Computers, the first African-American woman to supervise a 
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group of staff at the center. She later was promoted officially 

to the position. During her 28-year career, Vaughan prepared 

for the introduction of machine computers in the early 1960s 

by teaching herself and her staff the programming language 

of Fortran. She later headed the programming section of the 

Analysis and Computation Division (ACD) at Langley. Vaughan is 

one of the women featured in Margot Lee Shetterly's history 

Hidden Figures: The Story of the African-American Women 

Who Helped Win the Space Race (2016). It was adapted as a 

biographical film of the same name, also released in 2016. 

In 2019, Vaughan was awarded the Congressional Gold Medal 

posthumously."

Listing 4-34. Example JSON data for the file maryJackson.json

"Mary Jackson (née Winston, April 9, 1921 – February 11, 2005) 

was an American mathematician and aerospace engineer at the 

National Advisory Committee for Aeronautics (NACA), which 

in 1958 was succeeded by the National Aeronautics and Space 

Administration (NASA). She worked at Langley Research Center 

in Hampton, Virginia, for most of her career. She started as 

a computer at the segregated West Area Computing division in 

1951. She took advanced engineering classes and, in 1958, 

became NASA's first black female engineer. After 34 years at 

NASA, Jackson had earned the most senior engineering title 

available. She realized she could not earn further promotions 

without becoming a supervisor. She accepted a demotion to 

become a manager of both the Federal Women's Program, in 

the NASA Office of Equal Opportunity Programs and of the 

Affirmative Action Program. In this role, she worked to 

influence the hiring and promotion of women in NASA's science, 
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engineering, and mathematics careers. Jackson's story features 

in the 2016 non-fiction book Hidden Figures: The American 

Dream and the Untold Story of the Black Women Who Helped Win 

the Space Race. She is one of the three protagonists in Hidden 

Figures, the film adaptation released the same year. In 2019, 

Jackson was posthumously awarded the Congressional Gold Medal. 

In 2020 the Washington, D.C. headquarters of NASA was renamed 

the Mary W. Jackson NASA Headquarters."

Listing 4-35. Example JSON data for the file dorothyVaughan.json

"Dorothy Johnson Vaughan (September 20, 1910 – November 10, 

2008) was an American mathematician and human computer who 

worked for the National Advisory Committee for Aeronautics 

(NACA), and NASA, at Langley Research Center in Hampton, 

Virginia. In 1949, she became acting supervisor of the West 

Area Computers, the first African-American woman to supervise a 

group of staff at the center. She later was promoted officially 

to the position. During her 28-year career, Vaughan prepared 

for the introduction of machine computers in the early 1960s 

by teaching herself and her staff the programming language 

of Fortran. She later headed the programming section of the 

Analysis and Computation Division (ACD) at Langley. Vaughan is 

one of the women featured in Margot Lee Shetterly's history 

Hidden Figures: The Story of the African-American Women 

Who Helped Win the Space Race (2016). It was adapted as a 

biographical film of the same name, also released in 2016. 

In 2019, Vaughan was awarded the Congressional Gold Medal 

posthumously."
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Listing 4-36. Complete JavaScript code

const engineers = {

  "Katherine Johnson": "katherineJohnson",

  "Dorothy Vaughan": "dorothyVaughan",

  "Mary Jackson": "maryJackson",

};

let inputQuestion;

let model;

const loadModel = async () => await qna.load();

const init = async () => {

  const startButton = document.querySelector(".intro button");

  model = await loadModel();

  startButton.removeAttribute("disabled");

  startButton.innerHTML = "Start";

  startButton.onclick = () => {

     document.getElementsByTagName("main")[0].style.display = 

"block";

     document.getElementsByClassName("intro")[0].style.display = 

"none";

  };

  const figureButtons = document.getElementsByClassName("figure");

  let figureData;

  figureButtons.forEach((button) => {

    button.onclick = (e) => {

      const dataFile = engineers[e.target.textContent];

      fetch(`${window.location.href}${dataFile}.json`)

        .then((response) => response.json())

Chapter 4  text ClassifiCation and sentiment analysis



124

        .then((data) => {

           document.getElementsByClassName("selection")[0].

style.display =

            "none";

          figureData = data;

           const questionInput = document.getElementsByClassName

("question")[0];

          const label = document.getElementsByTagName("label")[0];

           label.innerHTML = `What would you like to know about 

${e.target.textContent}?`;

          questionInput.style.display = "block";

        });

    };

  });

  const askButton = document.getElementsByClassName("ask")[0];

  askButton.onclick = async () => {

     inputQuestion = document.getElementsByTagName("input")[0].

value;

     const answers = await model.findAnswers(inputQuestion, 

figureData);

    displayAnswer(answers);

    document.getElementsByTagName("input")[0].value = "";

  };

};

const displayAnswer = (answers) => {

  const inputQuestionElement = document.querySelector(

    ".answer-block .input-question"

  );

  const paragraphElement = document.

getElementsByClassName("answer")[0];
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  if (!answers[0]) {

    inputQuestionElement.innerHTML = "";

     paragraphElement.innerHTML = `Mmmm I don't seem to have the 

answer to this question 🤔`;

    return;

  }

   inputQuestionElement.innerHTML = `The answer to your question 

"${inputQuestion}" is:`;

  paragraphElement.innerHTML = `${answers[0].text}`;

   document.getElementsByClassName("answer-block")[0].style.

display = "block";

};

init();

In the code samples we just went through, questions are captured in an 

input field that users have to type in. However, there are other ways to get 

the same kind of information using another Web API.

Getting input data from the Web Speech API

A way to make this project even more interactive would be to allow people 

to ask their questions using their own voice rather than typing on their 

keyboard.

The Web API that enables speech recognition is the Web Speech API. 

Using this API, we can add speech-to-text functionality to this project and 

even text-to-speech with SpeechSynthesis, if we want the answers to also 

be read out loud.

The amount of code needed to add this feature is relatively small. 

Considering we already went through the core of the application, it will 

only impact the part that captures user’s input.

To start using the Web Speech API, you need to include the following 

lines in your JavaScript file.
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Listing 4-37. Initial setup to use the Web Speech API

var SpeechRecognition = SpeechRecognition || 

webkitSpeechRecognition;

var SpeechRecognitionEvent = SpeechRecognitionEvent || 

webkitSpeechRecognitionEvent;

These lines will allow you to have access to the speech recognition 

interface.

Then, to start using this interface, you need to create a speech 

recognition instance using the following.

Listing 4-38. Instantiate a new SpeechRecognition instance

const recognition = new SpeechRecognition();

Before starting the recognition, you can set a few parameters on your 

recognition instance. Personally, I set the following ones.

Listing 4-39. Optional parameters

recognition.continuous = false;

recognition.lang = "en-US";

recognition.interimResults = false;

The first one indicates that the listening and recognition is not 

continuous, meaning you will need a user interaction every time you 

want to listen to a question from the user. Setting it to false allows you to 

listen only when the user means to interact with the interface, instead of 

listening nonstop.

The second setting is the language of the recognition for the request. 

If unset, it will default to use the language of the HTML document root 

element, defined in your lang attribute.

At the moment, the list of languages available to use with the 

SpeechRecognition API includes

Chapter 4  text ClassifiCation and sentiment analysis



127

[

 ['Afrikaans',       ['af-ZA']],

 [' ',           ['am-ET']],

 ['Azərbaycanca',    ['az-AZ']],
 ['বাংলা',            ['bn-BD', 'বাংলাদেশ'],
                     ['bn-IN', 'ভারত']],
 ['Bahasa Indonesia',['id-ID']],

 ['Bahasa Melayu',   ['ms-MY']],

 ['Català',          ['ca-ES']],

 ['Čeština',         ['cs-CZ']],
 ['Dansk',           ['da-DK']],

 ['Deutsch',         ['de-DE']],

 ['English',         ['en-AU', 'Australia'],

                     ['en-CA', 'Canada'],

                     ['en-IN', 'India'],

                     ['en-KE', 'Kenya'],

                     ['en-TZ', 'Tanzania'],

                     ['en-GH', 'Ghana'],

                     ['en-NZ', 'New Zealand'],

                     ['en-NG', 'Nigeria'],

                     ['en-ZA', 'South Africa'],

                     ['en-PH', 'Philippines'],

                     ['en-GB', 'United Kingdom'],

                     ['en-US', 'United States']],

 ['Español',         ['es-AR', 'Argentina'],

                     ['es-BO', 'Bolivia'],

                     ['es-CL', 'Chile'],

                     ['es-CO', 'Colombia'],

                     ['es-CR', 'Costa Rica'],

                     ['es-EC', 'Ecuador'],

                     ['es-SV', 'El Salvador'],

                     ['es-ES', 'España'],
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                     ['es-US', 'Estados Unidos'],

                     ['es-GT', 'Guatemala'],

                     ['es-HN', 'Honduras'],

                     ['es-MX', 'México'],

                     ['es-NI', 'Nicaragua'],

                     ['es-PA', 'Panamá'],

                     ['es-PY', 'Paraguay'],

                     ['es-PE', 'Perú'],

                     ['es-PR', 'Puerto Rico'],

                     ['es-DO', 'República Dominicana'],

                     ['es-UY', 'Uruguay'],

                     ['es-VE', 'Venezuela']],

 ['Euskara',         ['eu-ES']],

 ['Filipino',        ['fil-PH']],

 ['Français',        ['fr-FR']],

 ['Basa Jawa',       ['jv-ID']],

 ['Galego',          ['gl-ES']],

 ['ગુજરાતી',           ['gu-IN']],
 ['Hrvatski',        ['hr-HR']],

 ['IsiZulu',         ['zu-ZA']],

 ['Íslenska',        ['is-IS']],

 ['Italiano',        ['it-IT', 'Italia'],

                     ['it-CH', 'Svizzera']],

 ['ಕನ್ನಡ',             ['kn-IN']],
 ['ភាសាខ្មែរ',          ['km-KH']],
 ['Latviešu',        ['lv-LV']],

 ['Lietuvių',        ['lt-LT']],
 ['മലയാളം',          ['ml-IN']],
 ['मराठी',             ['mr-IN']],
 ['Magyar',          ['hu-HU']],

 ['ລາວ',              ['lo-LA']],

 ['Nederlands',      ['nl-NL']],
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 ['नेपाली भाषा',        ['ne-NP']],
 ['Norsk bokmål',    ['nb-NO']],

 ['Polski',          ['pl-PL']],

 ['Português',       ['pt-BR', 'Brasil'],

                     ['pt-PT', 'Portugal']],

 ['Română',          ['ro-RO']],
 ['සිංහල',          ['si-LK']],

 ['Slovenščina',     ['sl-SI']],
 ['Basa Sunda',      ['su-ID']],

 ['Slovenčina',      ['sk-SK']],
 ['Suomi',           ['fi-FI']],

 ['Svenska',         ['sv-SE']],

 ['Kiswahili',       ['sw-TZ', 'Tanzania'],

                     ['sw-KE', 'Kenya']],

 ['ქართული',       ['ka-GE']],
 ['Հայերեն',          ['hy-AM']],
 ['தமிழ்',            ['ta-IN', 'இந்தியா'],
                     ['ta-SG', 'சிங்கப்பூர்'],
                     ['ta-LK', 'இலங்கை'],

                     ['ta-MY', 'மலேசியா']],
 ['తెలుగు',           ['te-IN']],
 ['Tiếng Việt',      ['vi-VN']],
 ['Türkçe',          ['tr-TR']],

 [' ',            ['ur-PK', ' '],

                     ['ur-IN', ' ']],

 ['Ελληνικά',         ['el-GR']],
 ['български',         ['bg-BG']],
 ['Pусский',          ['ru-RU']],
 ['Српски',           ['sr-RS']],
 ['Українська',        ['uk-UA']],
 ['한국어',            ['ko-KR']],
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 ['中文',             ['cmn-Hans-CN', '普通话 (中国大陆)'],

                     ['cmn-Hans-HK', '普通话 (香港)'],

                     ['cmn-Hant-TW', '中文 (台灣)'],

                     ['yue-Hant-HK', '粵語 (香港)']],

 ['日本語',           ['ja-JP']],

 ['हिन्दी',             ['hi-IN']],
 ['ภาษาไทย',         ['th-TH']]

];

Finally, the third setting interimResults set to false indicates I am 

only interested in getting the last result of the recognition, and not all 

interim results while I am speaking.

After setting these attributes, we can start the recognition using 

recognition.start().

If you have not enabled the microphone on the web page already, 

you will be prompted to do so, but otherwise, the microphone will start 

listening for inputs.

To have access to the results of the recognition, you need to call the 

onresult method, like this.

Listing 4-40. Getting results from the Web Speech API

recognition.onresult = function (event) {

   if (event.results[0][0]){

      var result = event.results[0][0].transcript;

   }

   console.log("result", result);

};

Calling onresult returns a callback with an event object of the 

following shape.

Chapter 4  text ClassifiCation and sentiment analysis



131

Looking at this output helps make sense of the way we are setting the 

result variable in the preceding code sample: event.results[0][0].

transcript.

Another useful method we can call is onspeechend.

onspeechend is triggered when speech has stopped being detected. To 

avoid running recognition when not needed, we can use onspeechend to 

stop the recognition entirely.

Listing 4-41. Code sample to stop the recognition when the API has 

detected that the user has stopped talking

recognition.onspeechend = function () {

   recognition.stop();

};

Put together, the code sample for speech recognition looks like this:

var SpeechRecognition = SpeechRecognition || 

webkitSpeechRecognition;

var SpeechRecognitionEvent =

  SpeechRecognitionEvent || webkitSpeechRecognitionEvent;

var recognition = new SpeechRecognition();

Figure 4-17. Output of calling the onresult method
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const startSpeechRecognition = () => {

  recognition.continuous = false;

  recognition.lang = "en-US";

  recognition.interimResults = false;

  recognition.onspeechend = () => recognition.stop();

  recognition.onresult = function (event) {

     if (event.results[0][0]) var result = event.results[0][0].

transcript;

    console.log("result", result);

  };

  recognition.start();

};

startSpeechRecognition();

In only 20 lines of JavaScript, a web application can listen to a user’s 

voice commands!

If you wanted to add this to the project we built previously, you could 

implement it where we added the event listener for clicks on the “ask” 

button.

Instead of using the input written in the input field, you could trigger 

the speech recognition on click, listen to the user’s voice input, and feed 

that to the model, the same way we sent our written input string.

Imagining you already added the basic setup of the SpeechRecognition 

instance from the code sample just earlier, the only change you would 

need to do to the project code would be in the function listening for clicks 

on the askButton element.

Listing 4-42. User voice commands with the QNA model

askButton.onclick = async () => {

  recognition.start();

  recognition.onresult = async (event) => {
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    if (event.results[0][0]) {

        var result = event.results[0][0].transcript;

    }

    inputQuestion = result;

     const answers = await model.findAnswers(inputQuestion, 

figureData);

    displayAnswer(answers);

    document.getElementsByTagName("input")[0].value = "";

  };

};

When the user clicks the button, this code starts the speech 

recognition and, on result, stores the final transcript in the inputQuestion 

variable. This variable was already sent to the findAnswers method in the 

original code for this project, but now it contains input from the user’s 

speech command.

A few changes would need to be done to the UI to reflect this 

functionality change (e.g., the input field is not necessarily needed 

anymore), but overall, the change we had to make to go from a written 

input to a spoken one only took a few lines of code!

Finally, if you wanted to go a little step further and have the output 

being read out loud to the user on top of being displayed on the screen, 

you can do so with the following three lines.

Listing 4-43. Code sample to get the output prediction read out 

loud using the SpeechSynthesis Web API

let speechSynth = window.speechSynthesis;

var result = new SpeechSynthesisUtterance(answers[0].text);

speechSynth.speak(result);
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These three lines create a speechSynthesis instance, execute a speech 

request passing the answer from the model, and call the speak method to 

make the speech service read the information out loud.

The default voice feels pretty robotic but a few parameters can be set to 

change this. I will not go into details here, but feel free to look at the MDN 

Web Docs for the Web Speech API for more information.

One last thing to keep in mind if you want to explore this API further 

is that the browser support is not at 100%. At the moment, it seems to be 

well supported on Chrome and Edge, but not Safari and Firefox.

Even though it is still pretty experimental, I would encourage you to 

look into it if you are interested.

This chapter contained a lot of information.

We looked into the basics of natural language processing, different 

types of text classification tools, various applications, and also how to 

implement sentiment analysis, toxicity classification, and question 

answering using TensorFlow.js, as well as experimenting with voice 

commands as a way to get text data to run predictions on.

If this is the first time you are diving into machine learning, this 

amount of information can feel a little bit overwhelming. However, as 

everything new takes time to understand, feel free to take breaks and come 

back to this chapter later on if you want.

The following chapter will dive into using other kind of data inputs 

with machine learning.
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CHAPTER 5

Experimenting 
with inputs
In the previous chapters, we looked into how to use machine learning with 

images and text data to do object detection and classification, as well as 

sentiment analysis, toxicity classification and question answering.

These are probably the most common examples of what machine 

learning can do. However, this list is not exhaustive and many more inputs 

can be used.

In this chapter, we’re going to explore different kinds of input data 

and build a few experimental projects to understand how to use machine 

learning with audio and hardware data, as well as using models focused on 

body and movement recognition.

5.1  Audio data
When you first read the words “audio data,” you might think that this 

section of the book is going to focus on music; however, I am going to dive 

into using sound more generally.

We don’t really think about it often but a lot of things around 

us produce sounds that give us contextual information about our 

environment.

https://doi.org/10.1007/978-1-4842-6418-8_5#DOI
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For example, the sound of thunder helps you understand the weather 

is probably bad without you having to look out the window, or you can 

 recognize the sound of a plane passing by before you even see it, or even 

hearing the sound of waves indicates you are probably close to the ocean, 

and so on.

Without realizing, recognizing, and understanding the meaning of 

these sounds impacts our daily lives and our actions. Hearing a knock on 

your door indicates someone is probably behind waiting for you to open it, 

or hearing the sound of boiling water while you are cooking suggests that it 

is ready for you to pour something in it.

Using sound data and machine learning could help us leverage the rich 

properties of sounds to recognize certain human activities and enhance 

current smart systems such as Siri, Alexa, and so on.

This is what is called acoustic activity recognition.

Considering a lot of the devices we surround ourselves with possess a 

microphone, there is a lot of opportunities for this technology.

So far, the smart systems some of us may be using recognize words 

to trigger commands, but they have no understanding of what is going 

on around them; your phone does not know you are in the bathroom, 

your Alexa device does not know you might be in the kitchen, and so on. 

However, they could and this could be used to create more tailored and 

useful digital experiences.

Figure 5-1. Illustration of personal devices that possess a microphone
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Before we dive into the practical part of this chapter and see how to 

build such systems in JavaScript using TensorFlow.js, it is helpful to start by 

understanding the basics of what sound is, and how it is translated to data 

we can use in code.

5.1.1  What is sound?
Sound is the vibration of air molecules.

If you have ever turned the volume of speakers really loud, you might 

have noticed that they end up moving back and forth with the music. This 

movement pushes on air particles, changing the air pressure and creating 

sound waves.

The same phenomenon happens with speech. When you speak, your 

vocal cords vibrate, disturbing air molecules around and changing the air 

pressure, creating sound waves.

A way to illustrate this phenomenon is with the following image.

Figure 5-2. Illustration of how sound waves work. Source:  
www.researchgate.net/figure/Sound-as-a-pressure-wave-The-peaks-
represent-times-when-air-molecules-are-clustered_fig2_215646583
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When you hit a tuning fork, it will start vibrating. This back and forth 

movement will change the surrounding air pressure. The movement forward 

will create a higher pressure and the movement backward will create a 

region of lower pressure. The repetition of this movement will create waves.

On the receiver side, our eardrums vibrate with the changes of 

pressure and this vibration is then transformed into an electrical signal 

sent to the brain.

So, if sound is a change in air pressure, how do we transform a sound 

wave into data we can use with our devices?

To be able to interpret sound data, our devices use microphones.

There exist different types of microphones, but in general, these 

devices have a diaphragm or membrane that vibrates when exposed to 

changes of air pressure caused by sound waves.

These vibrations move a magnet near a coil inside the microphone that 

generate a small electrical current. Your computer then converts this signal 

into numbers that represent both volume and frequency.

5.1.2  Accessing audio data
In JavaScript, the Web API that lets developers access data coming from 

the computer’s microphone is the Web Audio API.

If you have never used this API before, it’s totally fine; we are going to 

go through the main lines you need to get set up everything.

To start, we need to access the AudioContext interface on the global 

window object, as well as making sure we can get permission to access an 

audio and video input device with getUserMedia.

Listing 5-1. Setup to use the Web Audio API in JavaScript

window.AudioContext = window.AudioContext || window.

webkitAudioContext;

navigator.getUserMedia = navigator.getUserMedia || navigator.

webkitGetUserMedia;
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This code sample takes into consideration cross-browser compatibility.

Then, to start listening to input coming from the microphone, we need 

to wait for a user action on the page, for example, a click.

Once the user has interacted with the web page, we can instantiate 

an audio context, allow access to the computer’s audio input device, and 

use some of the Web Audio API built-in methods to create a source and an 

analyzer and connect the two together to start getting some data.

Listing 5-2. JavaScript code sample to set up the audio context on 

click

document.body.onclick = async () => {

  const audioctx = new window.AudioContext();

   const stream = await navigator.mediaDevices.getUserMedia({ 

audio: true });

  const source = audioctx.createMediaStreamSource(stream);

  analyser = audioctx.createAnalyser();

  analyser.smoothingTimeConstant = 0;

  source.connect(analyser);

  analyser.fftSize = 1024;

  getAudioData();

};

In the preceding code sample, we are using navigator.mediaDevices.

getUserMedia to get access to the microphone. If you have ever built 

applications that were using audio or video input devices before, you 

might be familiar with writing navigator.getUserMedia(); however, this 

is deprecated and you should now be using navigator.mediaDevices.

getUserMedia().

Writing it the old way will still work but is not recommended as it will 

probably not be supported in the next few years.
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Once the basic setup is done, the getAudioData function filters the raw 

data coming from the device to only get the frequency data.

Listing 5-3. Function to filter through the raw data to get the 

frequency data we will use

const getAudioData = () => {

  const freqdata = new Uint8Array(analyser.frequencyBinCount);

  analyser.getByteFrequencyData(freqdata);

  console.log(freqdata);

  requestAnimationFrame(getAudioData);

};

We also call requestAnimationFrame to continuously call this function 

and update the data we are logging with live data.

Altogether, you can access live data from the microphone in less than 

25 lines of JavaScript!

Listing 5-4. Complete code sample to get input data from the 

microphone in JavaScript

window.AudioContext = window.AudioContext || window.

webkitAudioContext;

navigator.getUserMedia = navigator.getUserMedia || navigator.

webkitGetUserMedia;

let analyser;
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document.body.onclick = async () => {

  const audioctx = new window.AudioContext();

   const stream = await navigator.mediaDevices.getUserMedia({ 

audio: true });

  const source = audioctx.createMediaStreamSource(stream);

  analyser = audioctx.createAnalyser();

  analyser.smoothingTimeConstant = 0;

  source.connect(analyser);

  analyser.fftSize = 1024;

  getAudioData();

};

const getAudioData = () => {

  const freqdata = new Uint8Array(analyser.frequencyBinCount);

  analyser.getByteFrequencyData(freqdata);

  console.log(freqdata);

  requestAnimationFrame(getAudioData);

};

The output from this code is an array of raw data we are logging in the 

browser’s console.
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Figure 5-3. Screenshot of the data returned by the preceding code 
sample
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These arrays represent the frequencies that make up the sounds 

recorded by the computer’s microphone. The default sample rate is 

44,100Hz, which means we get about 44,000 samples of data per second.

In the format shown earlier (arrays of integers), finding patterns to 

recognize some type of activity seems pretty difficult. We wouldn’t really be 

able to identify the difference between speaking, laughing, music playing, 

and so on.

To help make sense of this raw frequency data, we can turn it into 

visualizations.

5.1.3  Visualizing audio data
There are different ways to visualize sound. A couple of ways you might be 

familiar with are waveforms or frequency charts.

Waveform visualizers represent the displacement of sound waves over 

time.

Figure 5-4. Illustration of a waveform visualization. Source: 
https://css-tricks.com/making-an-audio-waveform-visualizer-
with-vanilla-javascript/

On the x axis (the horizontal one) is the unit of time and on the y axis 

(vertical one) is the frequencies. Sound happens over a certain period of 

time and is made of multiple frequencies.
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This way of visualizing sound is a bit too minimal to be able to identify 

patterns. As you can see in the illustration earlier, all frequencies that make 

up a sound are reduced to a single line.

Frequency charts are visualizations that represent a measure of how 

many times a waveform repeats in a given amount of time.

Figure 5-5. Illustration of a frequency chart visualization

You might be familiar with this type of audio visualization as they are 

probably the most common one.

This way of visualizing can maybe give you some insights about a beat 

as it represents repetitions or maybe about how loud the sound is as the  

y axis shows the volume, but that’s about it.

This visualization does not give us enough information to be able to 

recognize and classify sounds we are visualizing.

Another type of visualization that is much more helpful is called a 

spectrogram.

A spectrogram is like a picture of a sound. It shows the frequencies that 

make up the sound from low to high and how they change over time. It is a 

visual representation of the spectrum of frequencies of a signal, a bit like a 

heat map of sound.
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On the y axis is the spectrum of frequencies and, on the x axis, 

the amount of time. The axes seem similar to the two other type of 

visualizations we mentioned previously, but instead of representing all 

frequencies in a single line, we represent the whole spectrum.

In a spectrogram, a third axis can be helpful too, the amplitude. The 

amplitude of a sound can be described as the volume. The brighter the 

color, the louder the sound.

Visualizing sounds as spectrograms is much more helpful in finding 

patterns that would help us recognize and classify sounds.

For example, next is a screenshot of the output of a spectrogram 

running while I am speaking.

Figure 5-6. Illustration of a spectrogram
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By itself, this might not help you understand why spectrograms are 

more helpful visualizations. The following is another screenshot of a 

spectrogram taken while I was clapping my hands three times.

Figure 5-7. Illustration of a spectrogram taken while speaking

Figure 5-8. Illustration of a spectrogram taken while clapping my 
hands three times
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Hopefully, it starts to make more sense! If you compare both 

spectrograms, you can clearly distinguish between the two activities: 

speaking and clapping my hands.

If you wanted, you could try to visualize more sounds like coughing, 

your phone ringing, toilets flushing, and so on.

Overall, the main takeaway is that spectrograms help us see the 

signature of various sounds more clearly and distinguish them between 

different activities.

If we can make this differentiation by looking at a screenshot of a 

spectrogram, we can hope that using this data with a machine learning 

algorithm will also work in finding patterns and classify this sounds to 

build an activity classifier.

A broader example of using spectrograms for activity classification is 

from a research paper published by the Carnegie Mellon University in the 

United States. In their paper titled “Ubicoustics: Plug-and-Play Acoustic 

Activity Recognition,” they created spectrograms for various activities from 

using a chainsaw, to a vehicle driving nearby.

Figure 5-9. Spectrograms collected from the research by the Carnegie 
Mellon University. Source: http://www.gierad.com/projects/
ubicoustics/

So, before we dive into using sound with machine learning, let’s go 

through how we can turn the live data from the microphone that we logged 

in the console using the Web Audio API to a spectrogram.
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 Creating a spectrogram

In the code sample we wrote earlier, we created a getAudioData function 

that was getting the frequency data from the raw data and was logging it to 

the browser’s console.

Listing 5-5. getAudioData function to get frequency data from raw 

data

const getAudioData = () => {

  const freqdata = new Uint8Array(analyser.frequencyBinCount);

  analyser.getByteFrequencyData(freqdata);

  console.log(freqdata);

  requestAnimationFrame(getAudioData);

};

Where we wrote our console.log statement, we are going to add the 

code to create the visualization.

To do this, we are going to use the Canvas API, so we need to start by 

adding a canvas element to our HTML file like so.

Listing 5-6. Adding a canvas element to the HTML file

<canvas id="canvas"></canvas>

In our JavaScript, we are going to be able to access this element and 

use some methods from the Canvas API to draw our visualization.

Listing 5-7. Getting the canvas element and context in JavaScript

var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");
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The main concept of this visualization is to draw the spectrum of 

frequencies as they vary with time, so we need to get the current canvas 

and redraw over it every time we get new live data.

Listing 5-8. Getting the image data from the canvas element and 

redrawing over it

imagedata = ctx.getImageData(1, 0, canvas.width - 1, canvas.

height);

ctx.putImageData(imagedata, 0, 0);

Then, we need to loop through the frequency data we get from the Web 

Audio API and draw them onto the canvas.

Listing 5-9. Looping through frequency data and drawing it onto 

the canvas

for (var i = 0; i < freqdata.length; i++) {

  let value = (2 * freqdata[i]) / 255;

  ctx.beginPath();

   ctx.strokeStyle = `rgba(${Math.max(0, 255 * value)},  

${Math.max(

      0,

      255 * (value - 1)

    )}, 54, 255)`;

   ctx.moveTo(canvas.width - 1, canvas.height - i *  

(canvas.height / freqdata.length));

    ctx.lineTo(

      canvas.width - 1,

      canvas.height -
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        (i * (canvas.height / freqdata.length) +

          canvas.height / freqdata.length)

    );

    ctx.stroke();

  }

Inside this for loop, we use the beginPath method to indicate that we 

are going to start drawing something onto the canvas.

Then, we call strokeStyle and pass it a dynamic value that will 

represent the colors used to display the amplitude of the sound.

After that, we call moveTo to move the visualization 1 pixel to the left 

and leave space for the new input to be drawn onto the screen at the far 

right, drawn with lineTo.

Finally, we call the stroke method to draw the line.

Altogether, our getAudioData function should look something like this.

Listing 5-10. Full getAudioData function

const getAudioData = () => {

  freqdata = new Uint8Array(analyser.frequencyBinCount);

  analyser.getByteFrequencyData(freqdata);

  console.log(freqdata);

   imagedata = ctx.getImageData(1, 0, canvas.width - 1,  

canvas.height);

  ctx.putImageData(imagedata, 0, 0);

  for (var i = 0; i < freqdata.length; i++) {

    let value = (2 * freqdata[i]) / 255;

    ctx.beginPath();

     ctx.strokeStyle = `rgba(${Math.max(0, 255 * value)}, 

${Math.max(

      0,
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      255 * (value - 1)

    )}, 54, 255)`;

    ctx.moveTo(

      canvas.width - 1,

      canvas.height - i * (canvas.height / freqdata.length)

    );

    ctx.lineTo(

      canvas.width - 1,

      canvas.height -

        (i * (canvas.height / freqdata.length) +

          canvas.height / freqdata.length)

    );

    ctx.stroke();

  }

  requestAnimationFrame(getAudioData);

};

You might be wondering why it is important to understand how to 

create spectrograms. The main reason is that it is what is used as training 

data for the machine learning algorithm.

Instead of using the raw data the way we logged it in the browser’s 

console, we instead use pictures of spectrograms generated to transform a 

sound problem into an image one.

Advancements in image recognition and classification have been really 

good over the past few years, and algorithms used with image data have 

been proven to be very performant.

Also, turning sound data into an image means that we can deal with a 

smaller amount of data to train a model, which would result in a shorter 

amount of time needed.

Indeed, the default sample rate of the Web Audio API is 44KHz, which 

means that it collects 44,000 samples of data per second.

If we record 2 seconds of audio, it is 88,000 points of data for a single 

sample.
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You can imagine that as we need to record a lot more samples, it would 

end up being a very large amount of data being fed to a machine learning 

algorithm, which would take a long time to train.

On the other hand, a spectrogram being extracted as a picture can 

be easily resized to a smaller size, which could end up being only a 28x28 

pixel image, for example, which would result in 784 data points for a 

2-second audio clip.

Now that we covered how to access live data from the microphone 

in JavaScript and how to transform it into a spectrogram visualization, 

allowing us to see how different sounds create visually different patterns, 

let’s look into how to train a machine learning model to create a classifier.

5.1.4  Training the classifier
Instead of creating a custom machine learning algorithm for this, we are 

going to use instead one of the Teachable Machine experiments dedicated 

to sound data. You can find it at https://teachablemachine.withgoogle.

com/train/audio.

Figure 5-10. Teachable Machine interface

Chapter 5  experimenting with inputs

https://teachablemachine.withgoogle.com/train/audio
https://teachablemachine.withgoogle.com/train/audio


153

This project allows us to record samples of sound data, label them, 

train a machine learning algorithm, test the output, and export the model 

all within a single interface and in the browser!

To start, we need to record some background noise for 20 seconds 

using the section highlighted in red in the following figure.

Figure 5-11. Teachable Machine interface with background noise 
section highlighted

Then, we can start to record some samples for whatever sound we 

would like the model to recognize later on.

The minimum amount of samples is 8 and each of them needs to be 2 

seconds long.
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As this experiment uses transfer learning to quickly retrain a model 

that has already been trained with sound data, we need to work with the 

same format the original model was trained with.

Eight samples is the minimum but you can record more if you’d like. 

The more samples, the better. However, don’t forget that it will also impact 

the amount of time the training will take.

Once you have recorded your samples and labelled them, you can start 

the live training in the browser and make sure not to close the browser 

window.

Figure 5-12. Teachable Machine interface with custom section 
highlighted
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When this step is done, you should be able to see some live predictions 

in the last step of the experiment. Before you export the model, you can try 

to repeat the sounds you recorded to verify the accuracy of the predictions. 

If you don’t find it accurate enough, you can record more samples and 

restart the training.

Figure 5-13. Teachable Machine interface – training the model

Figure 5-14. Teachable Machine interface – running live predictions
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If you are ready to move on, you can either upload your model to some 

Google servers and be provided with a link to it, or download the machine 

learning model that was created.

If you’d like to get a better understanding of how it works in the 

background, how the machine learning model is created, and so on, I’d 

recommend having a look at the source code available on GitHub!

Even though I really like interfaces like Teachable Machine as they 

allow anyone to get started and experiment quickly, looking at the source 

code can reveal some important details. For example, the next image is 

how I realized that this project was using transfer learning.

While going through the code to see how the machine learning model 

was created and how the training was done, I noticed the following sample 

of code.

Figure 5-15. Sample from the open source GitHub repository of 
Teachable Machine

On line 793, we can see that the method addExample is called. This is 

the same method we used in the chapter of this book dedicated to image 

recognition when we used transfer learning to train an image classification 

model quickly with new input images.
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Noticing these details is important if you decide to experiment with 

re-creating this model on your own, without going through the Teachable 

Machine interface.

Now that we went through the training process, we can write the code 

to generate the predictions.

5.1.5  Predictions
Before we can start writing this code, we need to import TensorFlow.js and 

the speech commands model.

Listing 5-11. Import TensorFlow.js and the speech commands 

model in an HTML file

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@1.3.1/dist/tf.min.js"></script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

speech-commands@0.4.0/dist/speech-commands.min.js"></script>

As I mentioned earlier, this experiment uses transfer learning, so we 

need to import the speech commands model that has already been trained 

with audio data to make it simpler and faster to get started.

The speech commands model was originally trained to recognize and 

classify spoken words, like “yes”, “no”, “up”, and “down”. However, here, 

we are using it with sounds produced by activities, so it might not be as 

accurate as if we were using spoken words in our samples.

Before going through the rest of the code samples, make sure you 
have downloaded your trained model from the Teachable Machine 
platform, unzipped it, and added it to your application folder.

The following code samples will assume that your model is stored in 
a folder called activities-model at the root of your application.
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Overall, your file structure should look something like this:

 – activities-model/

 – metadata.json

 – model.json

 – weights.bin

 – index.html

 – index.js

In our JavaScript file, we will need to create a function to load our 

model and start the live predictions, but before, we can create two 

variables to hold the paths to our model and metadata files.

Listing 5-12. Variables to refer to the model and its metadata

let URL = "http://localhost:8000/activities-model/";

const modelURL = `${URL}/model.json`;

const metadataURL = `${URL}metadata.json`;

You may have noticed that I used localhost:8000 in the preceding 

code; however, feel free to change the port and make sure to update this if 

you decide to release your application to production.

Then, we need to load the model and ensure it is loaded before we 

continue.

Listing 5-13. Loading the model

const model = window.speechCommands.create(

    "BROWSER_FFT",

    undefined,

    modelURL,

    metadataURL

);

await model.ensureModelLoaded();
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Once the model is ready, we can run live predictions by calling the 
listen method on the model.

Listing 5-14. Live predictions

model.listen(
    (prediction) => {
      predictionCallback(prediction.scores);
    },
    modelParameters
  );

Altogether, the setupModel function should look like this.

Listing 5-15. Full code sample

async function setupModel(URL, predictionCB) {
  predictionCallback = predictionCB;
  const modelURL = `${URL}/model.json`;
  const metadataURL = `${URL}metadata.json`;

  model = window.speechCommands.create(
    "BROWSER_FFT",
    undefined,
    modelURL,
    metadataURL
  );
  await model.ensureModelLoaded();

  const modelParameters = {
     invokeCallbackOnNoiseAndUnknown: true,  // run even when 

only background 
noise is detected

    includeSpectrogram: true,
     overlapFactor: 0.5,  // how often per second to sample 

audio, 0.5 means twice per second

  };
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  model.listen(

    (prediction) => {

      predictionCallback(prediction.scores);

    },

    modelParameters

  );

}

When called, this function will contain the predictions data in the 

callback invoked every time the model has a prediction.

Listing 5-16. Calling the function

document.body.onclick = () => {

  setupModel(URL, (data) => {

     console.log(data)

  });

}
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This array containing the results of the prediction is ordered by label 

used. In the previous example, I had trained the model with six different 

labels so each array returned contained six values.

Figure 5-16. Example of data returned when calling the function
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In each array, the value closest to 1 represents the label predicted.

To match the data predicted with the correct label, we can create an 

array containing the labels we used for training and use it when calling the 

setupModel function.

Listing 5-17. Mapping scores to labels

const labels = [

  "Coughing",

  "Phone ringing",

  "Speaking",

  "_background_noise_",

];

let currentPrediction;

document.body.onclick = () => {

  setupModel(URL, (data) => {

    let maximum = Math.max(...data);

    if (maximum > 0.7) {

      let maxIndex = data.indexOf(maximum);

      currentPrediction = labels[maxIndex];

      console.log(currentPrediction);

    }

  });

}

In less than 100 lines of JavaScript, we are able to load and run a 

machine learning model that can classify live audio input!
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Listing 5-18. Full code sample

let model, predictionCallback;

let URL = "http://localhost:8000/activities-model/";

const labels = [

  "Coughing",

  "Phone ringing",

  "Speaking",

  "_background_noise_",

];

let currentPrediction, previousPrediction;

currentPrediction = previousPrediction;

document.body.onclick = () => {

  setupModel(URL, (data) => {

    let maximum = Math.max(...data);

    if (maximum > 0.7) {

      let maxIndex = data.indexOf(maximum);

      currentPrediction = labels[maxIndex];

      console.log(currentPrediction);

    }

  });

};

async function setupModel(URL, predictionCB) {

  const modelURL = `${URL}/model.json`;

  const metadataURL = `${URL}metadata.json`;

  model = window.speechCommands.create(

    "BROWSER_FFT",

    undefined,

    modelURL,
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    metadataURL

  );

  await model.ensureModelLoaded();

  // This tells the model how to run when listening for audio

  const modelParameters = {

     invokeCallbackOnNoiseAndUnknown: true,  // run even when 

only background 

noise is detected

     includeSpectrogram: true,  // give us access to numerical 

audio data

     overlapFactor: 0.5,  // how often per second to sample 

audio, 0.5 means twice per second

  };

  model.listen(

    (prediction) => {

      predictionCallback(prediction.scores);

    },

    modelParameters

  );

}

5.1.6  Transfer learning API
In the previous section, we covered how to record sound samples and 

train the model using the Teachable Machine experiment, for simplicity. 

However, if you are looking to implement this in your own application 

and let users run this same process themselves, you can use the transfer 

learning API.

This API lets you build your own interface and call API endpoints to 

record samples, train the model, and run live predictions.
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 Recording samples

Let’s imagine a very simple web interface with a few buttons.

Figure 5-17. Web interface with a few button elements

Some of these buttons are used to collect sample data, one button to 

start the training and the last one to trigger the live predictions.

To get started, we need an HTML file with these six buttons and two 

script tags to import TensorFlow.js and the Speech Commands model.

Listing 5-19. HTML file

<html lang="en">

  <head>

    <title>Speech recognition</title>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@1.3.1/dist/tf.min.js"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/speech-commands@0.4.0/dist/speech-commands.min.js"> 

</script>

  </head>

  <body>

    <section>

        <button id="red">Red</button>

        <button id="blue">Blue</button>

        <button id="green">Green</button>

        <button id="background">Background</button>

        <button id="train">Train</button>

        <button id="predict">Predict</button>

    </section>
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    <script src="index.js"></script>

  </body>

</html>

In the JavaScript file, before being able to run these actions, we need to 

create the model, ensure it is loaded, and pass a main label to our model to 

create a collection that will contain our audio samples.

Listing 5-20. Set up the recognizers

const init = async () => {

  const baseRecognizer = speechCommands.create("BROWSER_FFT");

  await baseRecognizer.ensureModelLoaded();

  transferRecognizer = baseRecognizer.createTransfer("colors");

};

Then, we can add event listeners on our buttons so they will collect 

samples on click. For this, we need to call the collectExample method on 

our recognizer and pass it a string we would like the sample to be labelled 

with.

Listing 5-21. Collecting samples

const redButton = document.getElementById("red");

redButton.onclick = async () => await transferRecognizer.

collectExample("red");

To start the training, we call the train method on the recognizer.

Listing 5-22. Training

const trainButton = document.getElementById("train");

trainButton.onclick = async () => {

  await transferRecognizer.train({

    epochs: 25,
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    callback: {

      onEpochEnd: async (epoch, logs) => {

         console.log(`Epoch ${epoch}: loss=${logs.loss}, 

accuracy=${logs.acc}`);

      },

    },

  });

};

And finally, to classify live audio inputs after training, we call the 

listen method.

Listing 5-23. Predict

const predictButton = document.getElementById("predict");

predictButton.onclick = async () => {

  await transferRecognizer.listen(

    (result) => {

      const words = transferRecognizer.wordLabels();

      for (let i = 0; i < words.length; ++i) {

         console.log(`score for word '${words[i]}' = ${result.

scores[i]}`);

      }

    },

    { probabilityThreshold: 0.75 }

  );

};
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Altogether, this code sample looks like the following.

Listing 5-24. Full code sample

let transferRecognizer;

const init = async () => {

  const baseRecognizer = speechCommands.create("BROWSER_FFT");

  await baseRecognizer.ensureModelLoaded();

  transferRecognizer = baseRecognizer.createTransfer("colors");

};

init();

const redButton = document.getElementById("red");

const backgroundButton = document.getElementById("background");

const trainButton = document.getElementById("train");

const predictButton = document.getElementById("predict");

redButton.onclick = async () => await transferRecognizer.

collectExample("red");

backgroundButton.onclick = async () =>

   await transferRecognizer.collectExample("_background_

noise_");

trainButton.onclick = async () => {

  await transferRecognizer.train({

    epochs: 25,

    callback: {

      onEpochEnd: async (epoch, logs) => {

         console.log(`Epoch ${epoch}: loss=${logs.loss}, 

accuracy=${logs.acc}`);

      },
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    },

  });

};

predictButton.onclick = async () => {

  await transferRecognizer.listen(

    (result) => {

      const words = transferRecognizer.wordLabels();

      for (let i = 0; i < words.length; ++i) {

         console.log(`score for word '${words[i]}' = ${result.

scores[i]}`);

      }

    },

    { probabilityThreshold: 0.75 }

  );

};

5.1.7  Applications
Even though the examples I have used so far for our code samples 

(speaking and coughing) might have seemed simple, the way this 

technology is currently being used shows how interesting it can be.

 Health

In July 2020, Apple announced the release of a new version of their 

watchOS that included an application triggering a countdown when the 

user washes their hands. Related to the advice from public health officials 

around avoiding the spread of COVID-19, this application uses the watch’s 

microphone to detect the sound of running water and trigger the 20 

seconds countdown.
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Figure 5-19. Interface of the countdown on the Apple Watch

Figure 5-18. Countdown triggered when the user washes their hands

From the code samples shown in the last few pages, a similar 

application can be built using JavaScript and TensorFlow.js.
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 Biodiversity research and protection

One of my favorite applications for this technology is in biodiversity 

research and protection of endangered species.

A really good example of this is the Rainforest Connection collective.

This collective uses old cell phone and their built-in microphones to 

detect the sound of chainsaws in the forest and alert rangers of potential 

activities of illegal deforestation.

Using solar panels and attaching the installation to trees, they can 

constantly monitor what is going on around and run live predictions.

Figure 5-20. Prototype of similar countdown interface using 
TensorFlow.js
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If this is a project that interests you, they also have a mobile application 

called Rainforest Connection, in which you can listen to the sound of 

nature, live from the forest, if you would like to check it out!

Another use of this technology is in protecting killer whales. A 

collaboration between Google, Rainforest Connection, and Fisheries and 

Oceans Canada (DFO) uses bioacoustics monitoring to track, monitor, and 

observe the animal’s behavior in the Salish Sea.

Figure 5-21. Example of installation made of solar panels and used 
mobile phones. Source: https://www.facebook.com/RainforestCx/

Figure 5-22. Web interface tracking killer whales. Source: https://
venturebeat.com/2020/01/28/googles-ai-powers-real-time-
orca-tracking-in-vancouver-bay/
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 Web Accessibility

Another application you might not have noticed is currently implemented 

in a service you probably know. Indeed, if you are using YouTube, you may 

have come across live ambient sound captioning.

If you have ever activated captions on a YouTube video, you may know 

of spoken words being displayed as an overlay at the bottom.

However, there are more information in a video than what can be 

found in the transcripts.

Indeed, people without hearing impairment benefit from having 

access to additional information in the form of contextual sounds like 

music playing or the sound of rain in a video.

Only displaying spoken words in captions can cut quite a lot of 

information out for people with hearing impairment.

About 3 years ago, in 2017, YouTube released live ambient sound 

captioning that uses acoustic recognition to add to the captions details 

about ambient sounds detected in the soundtrack of a video.

Here is an example.

Figure 5-23. Example of live ambient sound captioning on YouTube
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The preceding screenshot is taken from an interview between Janelle 

Monae and Pharrell Williams where the captions are activated.

Spoken words are displayed as expected, but we can also see ambient 

sounds like [Applause].

People with hearing impairment can now have the opportunity to get 

more information about the video than only dialogues.

At the moment, the ambient sounds that can be detected on YouTube 

videos include

• Applause

• Music playing

• Laughter

It might not seem like much, but again, this is something we take for 

granted if we never have to think about the experience some people with 

disabilities have on these platforms.

Besides, thinking this feature has been implemented about 3 years 

ago already shows that a major technology company like Google has been 

actively exploring the potential of using machine learning with audio data 

and has been working on finding useful applications.

5.1.8  Limits
Now that we covered how to experiment with acoustic activity recognition 

in JavaScript and a few different applications, it is important to be aware of 

some of the limitations of such technology to have a better understanding 

of the real opportunities.

 Quality and quantity of the data

If you decide to build a similar acoustic activity recognition system from 

scratch and write your own model without using transfer learning and the 

speech commands model from TensorFlow.js, you are going to need to 
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collect a lot more sound samples than the minimum of 8 required when 

using Teachable Machine.

To gather a large amount of samples, you can either decide to record 

them yourself or buy them from a professional audio library.

Another important point is to make sure to check the quality of 

the data recorded. If you want to detect the sound of a vacuum cleaner 

running, for example, make sure that there is no background noise and 

that the vacuum cleaner can be clearly heard in the audio track.

One tip to generate samples of data from a single one is to use an audio 

editing software to change some parameters of a single audio source to 

create multiple versions of it. You can, for example, modify the reverb, the 

pitch, and so on.

Figure 5-24. Transforming sounds. Gierad Laput, Karan Ahuja, 
Mayank Goel, and Chris Harrison. 2018. Ubicoustics: Plug-and-
Play Acoustic Activity Recognition. In The 31st Annual ACM 
Symposium on User Interface Software and Technology (UIST 
'18). ACM, New York, NY, USA, 213-224. DOI: https://doi.
org/10.1145/3242587.3242609
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 Single activity

At the moment, this technology seems to be efficient in recognizing a 

single sound at once.

For example, if you trained your model to recognize the sound of 

someone speaking as well as the sound of running water, if you placed 

your system in the kitchen and the user was speaking as well as washing 

the dishes, the activity predicted would only be the one with the highest 

score in the predictions returned.

However, as the system runs continuously, it would probably get 

confused between the two activities. It would probably alternate between 

“speaking” and “running water” until one of the activities stopped.

This would definitely become a problem if you built an application that 

can detect sounds produced by activities that can be executed at the same 

time.

For example, let’s imagine you usually play music while taking a 

shower and you built an application that can detect two activities: the 

sound of the shower running and speaking.

You want to be able to trigger a counter whenever it detects that the 

shower is running so you can avoid taking long showers and save water.

You also want to be able to lower the sound of your speakers when it 

detects that someone is speaking in the bathroom.

As these two activities can happen at the same time (you can speak 

while taking a shower), the system could get confused between the two 

activities and detect the shower running for a second and someone 

speaking the next.

As a result, it would start and stop the speakers one second, and 

start/stop the counter the next. This would definitely not create an ideal 

experience.

However, this does not mean that there is no potential in building 

applications using acoustic activity recognition, it only means that we 

would need to work around this limitation.
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Besides, some research is being done around developing systems that 

can handle the detection of multiple activities at once. We will look into it 

in the next few pages.

 User experience

When it comes to user experience, there are always some challenges with 

new technologies like this one.

First of all, privacy.

Having devices listening to users always raises some concerns about 

where the data is stored, how it is used, is it secure, and so on.

Considering that some companies releasing Internet of Things devices 

do not always put security first in their products, these concerns are very 

normal.

As a result, the adoption of these devices by consumers can be slower 

than expected.

Not only privacy and security should be baked in these systems, it 

should also be communicated to users in a clear way to reassure them and 

give them a sense of empowerment over their data.

Secondly, another challenge is in teaching users new interactions.

For example, even though most modern phones now have voice 

assistants built-in, getting information from asking Siri or Google is not the 

primary interaction.

This could be for various reasons including privacy and limitations 

of the technology itself, but people also have habits that are difficult to 

change.

Besides, considering the current imperfect state of this technology, 

it is easy for users to give up after a few trials, when they do not get the 

response they were looking for.

A way to mitigate this would be to release small applications to analyze 

users’ reactions to them and adapt. The work Apple did by implementing 

the water detection in their new watchOS is an example of that.
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Finally, one of the big challenges of creating a custom acoustic activity 

recognition system is in the collection of sample data and training by the 
users.

Even though you can build and release an application that detects the 

sound of a faucet running because there’s a high probability that it produces 

a similar sound in most homes, some other sounds are not so common.

As a result, empowering users to use this technology would involve 

letting them record their own samples and train the model so they can 

have the opportunity to have a customized application.

However, as machine learning algorithms need to be trained with a large 

amount of data to have a chance to produce accurate predictions, it would 

require a lot of effort from users and would inevitably not be successful.

Luckily, some researchers are experimenting with solutions to these 

problems.

Now, even though there are some limits to this technology, solutions 

also start to appear.

For example, in terms of protecting users’ privacy, an open source 

project called Project Alias by Bjørn Karmann attempts to empower voice 

assistant users.

This project is a DIY add-on made with a Raspberry Pi microcontroller, 

a speaker, and microphone module, all in a 3D printed enclosure that aims 

at blocking voice assistants like Amazon Alexa and Google Home from 

continuously listening to people.

Through a mobile application, users can train Alias to react on a 

custom wake word or sound. Once it is trained, Alias can take control over 

the home assistant and activate it for you. When you don’t use it, the add-

on will prevent the assistant from listening by emitting white noise into 

their microphone.

Alias’s neural network being run locally, the privacy of the user is 

protected.
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Figure 5-25. Project Alias. Source: https://bjoernkarmann.dk/
project_alias

Figure 5-26. Project Alias components. Source: https://
bjoernkarmann.dk/project_alias
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Another project, called Synthetic Sensors, aims at creating a system 

that can accurately predict multiple sounds at once.

Developed by a team of researchers at the Carnegie Mellon University, 

this project involves a custom-built piece of hardware made of multiple 

sensors, including an accelerometer, microphone, temperature sensor, 

motion sensor, and color sensor.

Using the raw data collected from these sensors, researchers created 

multiple stacked spectrograms and trained algorithms to detect patterns 

produced by multiple activities such as

• Microwave door closed

• Wood saw running

• Kettle on

• Faucet running

• Toilet flushing

Figure 5-27. Project Synthetic Sensors hardware. Gierad Laput, Yang 
Zhang, and Chris Harrison. 2017. Synthetic Sensors: Towards General-
Purpose Sensing. In Proceedings of the 2017 CHI Conference on 
Human Factors in Computing Systems (CHI '17). ACM, New York, NY, 
USA, 3986-3999. DOI: https://doi.org/10.1145/3025453.3025773.
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Finally, in terms of user experience, a research project called Listen 

Learner aims at allowing users to collect data and train a model to 

recognize custom sounds, with minimal effort.

The full name of the project is Listen Learner, Automatic Class 

Discovery and One-Shot Interaction for Activity Recognition.

It aims at providing high classification accuracy, while minimizing user 

burden, by continuously listening to sounds in its environment, classifying 

them by cluster of similar sounds, and asking the user what the sound is 

after having collected enough similar samples.

The result of the study shows that this system can accurately and 

automatically learn acoustic events (e.g., 97% precision, 87% recall), while 

adhering to users’ preferences for nonintrusive interactive behavior.

Figure 5-28. Project Synthetic Sensors example of spectrograms 
and activities recognition. Gierad Laput, Yang Zhang, and Chris 
Harrison. 2017. Synthetic Sensors: Towards General-Purpose Sensing. 
In Proceedings of the 2017 CHI Conference on Human Factors in 
Computing Systems (CHI '17). ACM, New York, NY, USA, 3986-3999. 
DOI: https://doi.org/10.1145/3025453.3025773
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5.2  Body and movement tracking
After looking at how to use machine learning with audio data, let’s look 

into another type of input, that is, body tracking.

In this section, we are going to use data from body movements via the 

webcam using three different Tensorlfow.js models.

Figure 5-29. Wu, J., Harrison, C., Bigham, J. and Laput, G. 2020. 
Automated Class Discovery and One-Shot Interactions for Acoustic 
Activity Recognition. In Proceedings of the 38th Annual SIGCHI 
Conference on Human Factors in Computing Systems. CHI '20. 
ACM, New York, NY. Source: www.chrisharrison.net/index.php/
Research/ListenLearner
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Figure 5-30. Example of visualization of face tracking with 
Facemesh. source: https://github.com/tensorflow/tfjs-models/
tree/master/facemesh

5.2.1  Facemesh
The first model we are going to experiment with is called Facemesh. It is 

a machine learning model focused on face recognition that predicts the 

position of 486 3D facial landmarks on a user’s face, returning points with 

their x, y, and z coordinates.
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The main difference between this face recognition model and 

other face tracking JavaScript libraries like face-tracking.js is that the 

TensorFlow.js model intends to approximate the surface geometry of a 

human face and not only the 2D position of some key points.

This model provides coordinates in a 3D environment which allows to 

approximate the depth of facial features as well as tracking the position of 

key points even when the user is rotating their face in three dimensions.

Figure 5-31. Map of the keypoints. Source: https://github.com/
tensorflow/tfjs-models/tree/master/facemesh
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 Loading the model

To start using the model, we need to load it using the two following lines in 

your HTML file.

Listing 5-25. Importing TensorFlow.js and Facemesh in an HTML 

file

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"> 

</script>

<script src='https://cdn.jsdelivr.net/npm/@tensorflow-models/

facemesh'></script>

As we are going to use the video feed from the webcam to detect faces, 

we also need to add a video element to our file.

Altogether, the very minimum HTML you need for this is as follows.

Figure 5-32. Key points using the webcam and in a 3D visualization. 
Source: https://storage.googleapis.com/tfjs-models/demos/
facemesh/index.html
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Listing 5-26. Core HTML code needed

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width,  

initial-scale=1.0" />

    <title>Facemesh</title>

  </head>

  <body>

    <video></video>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/facemesh"></script>

    <script src="index.js"></script>

  </body>

</html>

Then, in your JavaScript code, you need to load the model and the 

webcam feed using the following code.

Listing 5-27. Load the model and set up the webcam feed

let model;

let video;

const init = async () => {

  model = await facemesh.load();

  video = await loadVideo();

  main(); // This will be declared in the next code sample.

}
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const loadVideo = async () => {

  const video = await setupCamera();

  video.play();

  return video;

};

const setupCamera = async () => {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(

       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }

  video = document.querySelector("video");

  video.width = window.innerWidth;

  video.height = window.innerHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: window.innerWidth,

      height: window.innerHeight,

    },

  });

  video.srcObject = stream;

  return new Promise(

     (resolve) => (video.onloadedmetadata = () => 

resolve(video))

  );

};
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 Predictions

Once the model and the video are ready, we can call our main function to 

find facial landmarks in the input stream.

Listing 5-28. Function to find face landmarks

async function main() {

  const predictions = await model.estimateFaces(

    document.querySelector("video")

  );

  if (predictions.length > 0) {

    console.log(predictions);

    for (let i = 0; i < predictions.length; i++) {

      const keypoints = predictions[i].scaledMesh;

      // Log facial keypoints.

      for (let i = 0; i < keypoints.length; i++) {

        const [x, y, z] = keypoints[i];

        console.log(`Keypoint ${i}: [${x}, ${y}, ${z}]`);

      }

    }

  }

}

The output of this code sample in the browser’s console returns the 

following.
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Figure 5-33. Output of the landmarks in the console
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Figure 5-34. Output of loop statement in the console
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As we can see in the preceding two screenshots, the predictions 

returned contain an important amount of information.

The annotations are organized by landmark areas, in alphabetical 

order and containing arrays of x, y, and z coordinates.

The bounding box contains two main keys, bottomRight and topLeft, 

to indicate the boundaries of the position of the detected face in the video 

stream. These two properties contain an array of only two coordinates, x 

and y, as the z axis is not useful in this case.

Finally, the mesh and scaledMesh properties contain all coordinates 

of the landmarks and are useful to render all points in 3D space on the 

screen.

 Full code sample

Altogether, the JavaScript code to set up the model, the video feed, and 

start predicting the position of landmarks should look like the following.

Listing 5-29. Full JavaScript code sample

let video;

let model;

const init = async () => {

  video = await loadVideo();

  await tf.setBackend("webgl");

  model = await facemesh.load();

  main();

};

const loadVideo = async () => {

  const video = await setupCamera();

  video.play();

  return video;

};
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const setupCamera = async () => {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(

       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }

  video = document.querySelector("video");

  video.width = window.innerWidth;

  video.height = window.innerHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: window.innerWidth,

      height: window.innerHeight,

    },

  });

  video.srcObject = stream;

  return new Promise(

    (resolve) => (video.onloadedmetadata = () => 

resolve(video))

  );

};
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init();

async function main() {

  const predictions = await model.estimateFaces(

    document.querySelector("video")

  );

  if (predictions.length > 0) {

    console.log(predictions);

    for (let i = 0; i < predictions.length; i++) {

      const keypoints = predictions[i].scaledMesh;

      // Log facial keypoints.

      for (let i = 0; i < keypoints.length; i++) {

        const [x, y, z] = keypoints[i];

        console.log(`Keypoint ${i}: [${x}, ${y}, ${z}]`);

      }

    }

  }

  requestAnimationFrame(main);

}

 Project

To put this code sample into practice, let’s build a quick prototype to allow 

users to scroll down a page by tilting their head back and forth.

We are going to be able to reuse most of the code written previously 

and make some small modifications to trigger a scroll using some of the 

landmarks detected.

The specific landmark we are going to use to detect the movement of 

the head is the lipsLowerOuter and more precisely its z axis.
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Looking at all the properties available in the annotations object, 

using the lipsLowerOuter one is the closest to the chin, so we can look 

at the predicted changes of z coordinate for this area to determine if the 

head is tilting backward (chin moving forward) or forward (chin moving 

backward).

To do this, in our main function, once we get predictions, we can add 

the following lines of code.

Listing 5-30. Triggering scroll when z axis changes

if (predictions[0].annotations.lipsLowerOuter) {

   let zAxis = predictions[0].annotations.lipsLowerOuter[9][2];

   if (zAxis > 5) {

     // Scroll down

     window.scrollTo({

       top: (scrollPosition += 10),

       left: 0,

       behavior: "smooth",

     });

   } else if (zAxis < -5) {

     // Scroll up

     window.scrollTo({

      top: (scrollPosition -= 10),

      left: 0,

      behavior: "smooth",

    });

   }

}

In this code sample, I declare a variable that I call zAxis to store the 

value of the z coordinate I want to track. To get this value, I look into the 

array of coordinates contained in the lipsLowerOuter property of the 

annotations object.
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Based on the annotation objects returned, we can see that the 

lipsLowerOuter property contains 10 arrays of 3 values each.

Figure 5-35. Annotations returned with lipsLowerOuter values

This is why the code sample shown just earlier was accessing the z 

coordinates using predictions[0].annotations.lipsLowerOuter[9][2].

I decided to access the last element ([9]) of the lipsLowerOuter 

property and its third value ([2]), the z coordinate of the section.

The value 5 was selected after trial and error and seeing what threshold 

would work for this particular project. It is not a standard value that you 

will need to use every time you use the Facemesh model. Instead,  
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I decided it was the correct threshold for me to use after logging the 

variable zAxis and seeing its value change in the browser’s console as I 

was tilting my head back and forth.

Then, assuming that you declared scrollPosition earlier in the code 

and set it to a value (I personally set it to 0), a “scroll up” event will happen 

when you tilt your head backward and “scroll down” when you tilt your 

head forward.

Finally, I set the property behavior to “smooth” so we have some 

smooth scrolling happening, which, in my opinion, creates a better 

experience.

If you did not add any content to your HTML file, you won’t see 

anything happen yet though, so don’t forget to add enough text or images 

to be able to test that everything is working!

In less than 75 lines of JavaScript, we loaded a face recognition model, 

set up the video stream, ran predictions to get the 3D coordinates of facial 

landmarks, and wrote some logic to trigger a scroll up or down when tilting 

your head backward or forward!

Listing 5-31. Complete JavaScript code

let video;

let model;

const init = async () => {

  video = await loadVideo();

  await tf.setBackend("webgl");

  model = await facemesh.load();

  main();

};

const loadVideo = async () => {

  const video = await setupCamera();

  video.play();
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  return video;

};

const setupCamera = async () => {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(

       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }

  video = document.querySelector("video");

  video.width = window.innerWidth;

  video.height = window.innerHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: window.innerWidth,

      height: window.innerHeight,

    },

  });

  video.srcObject = stream;

  return new Promise(

    (resolve) => (video.onloadedmetadata = () => 

resolve(video))

  );

};
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init();

let scrollPosition = 0;

async function main() {

  const predictions = await model.estimateFaces(

    document.querySelector("video")

  );

  if (predictions.length > 0) {

    if (predictions[0].annotations.lipsLowerOuter) {

      zAxis = predictions[0].annotations.lipsLowerOuter[9][2];

      if (zAxis > 5) {

        // Scroll down

        window.scrollTo({

          top: (scrollPosition += 10),

          left: 0,

          behavior: "smooth",

        });

      } else if (zAxis < -5) {

        // Scroll up

        window.scrollTo({

          top: (scrollPosition -= 10),

          left: 0,

          behavior: "smooth",

        });

      }

    }

  }

  requestAnimationFrame(main);

}
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This model is specialized in detecting face landmarks. Next, we’re 

going to look into another one, to detect keypoints in a user’s hands.

5.2.2  Handpose
The second model we are going to experiment with is called Handpose. 

This model specializes in recognizing the position of 21 3D keypoints in 

the user’s hands.

The following is an example of the output of this model, once 

visualized on the screen using the Canvas API.

Figure 5-36. Keypoints from Handpose visualized. Source: https://
github.com/tensorflow/tfjs-models/tree/master/handpose
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To implement this, the lines of code will look very familiar if you have 

read the previous section.

 Loading the model

We need to start by requiring TensorFlow.js and the Handpose model:

Listing 5-32. Import TensorFlow.js and the Handpose model

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"> 

</script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

handpose"></script>

Figure 5-37. Keypoints from Handpose visualized. Source: https://
github.com/tensorflow/tfjs-models/tree/master/handpose
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Similarly to the way the Facemesh model works, we are going to use 

the video stream as input so we also need to add a video element in your 

main HTML file.

Then, in your JavaScript file, we can use the same functions we wrote 

before to set up the camera and load the model. The only line we will need 

to change is the line where we call the load method on the model.

As we are using Handpose instead of Facemesh, we need to replace 

facemesh.load() with handpose.load().

So, overall the base of your JavaScript file should have the following code.

Listing 5-33. Code to set up to load the model and video input

let video;

let model;

const init = async () => {

  video = await loadVideo();

  await tf.setBackend("webgl");

  model = await handpose.load();

};

const loadVideo = async () => {

  const video = await setupCamera();

  video.play();

  return video;

};

const setupCamera = async () => {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(

       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }
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  video = document.querySelector("video");

  video.width = window.innerWidth;

  video.height = window.innerHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: window.innerWidth,

      height: window.innerHeight,

    },

  });

  video.srcObject = stream;

  return new Promise(

     (resolve) => (video.onloadedmetadata = () => 

resolve(video))

  );

};

init();

 Predicting key points

Once the model is loaded and the webcam feed is set up, we can run 

predictions and detect keypoints when a hand is placed in front of the 

webcam.

To do this, we can copy the main() function we created when using 

Facemesh, but replace the expression model.estimateFaces with model.

estimateHands.
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As a result, the main function should be as follows.

Listing 5-34. Run predictions and log the output

async function main() {

  const predictions = await model.estimateHands(

    document.querySelector("video")

  );

  if (predictions.length > 0) {

    console.log(predictions);

  }

  requestAnimationFrame(main);

}

The output of this code will log the following data in the browser’s 

console.
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Figure 5-38. Output when detecting hands
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We can see that the format of this data is very similar to the one when 

using the Facemesh model!

This makes it easier and faster to experiment as you can reuse code 

samples you have written in other projects. It allows developers to get set 

up quickly to focus on experimenting with the possibilities of what can be 

built with such models, without spending too much time in configuration.

The main differences that can be noticed are the properties defined in 

annotations, the additional handInViewConfidence property, and the lack 

of mesh and scaledMesh data.

The handInViewConfidence property represents the probability of a 

hand being present. It is a floating value between 0 and 1. The closer it is to 

1, the more confident the model is that a hand is found in the video stream.

At the moment of writing this book, this model is able to detect only 

one hand at a time. As a result, you cannot build applications that would 

require a user to use both hands at once as a way of interacting with the 

interface.

 Full code sample

To check that everything is working properly, here is the full JavaScript 

code sample needed to test your setup.

Listing 5-35. Full code sample

let video;

let model;

const init = async () => {

  video = await loadVideo();

  await tf.setBackend("webgl");

  model = await handpose.load();

  main();

};
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const loadVideo = async () => {

  const video = await setupCamera();

  video.play();

  return video;

};

const setupCamera = async () => {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(

       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }

  video = document.querySelector("video");

  video.width = window.innerWidth;

  video.height = window.innerHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: window.innerWidth,

      height: window.innerHeight,

    },

  });

  video.srcObject = stream;
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  return new Promise(

     (resolve) => (video.onloadedmetadata = () => 

resolve(video))

  );

};

init();

async function main() {

  const predictions = await model.estimateHands(

    document.querySelector("video")

  );

  if (predictions.length > 0) {

    console.log(predictions);

  }

  requestAnimationFrame(main);

}

 Project

To experiment with the kind of applications that can be built with this 

model, we’re going to build a small “Rock Paper Scissors” game.

To understand how we are going to recognize the three gestures, let’s 

have a look at the following visualizations to understand the position of the 

keypoints per gesture.
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The preceding screenshot represents the “rock” gesture. As we can see, 

all fingers are folded so the tips of the fingers should be further in their z 

axis than the keypoint at the end of the first phalanx bone for each finger.

Otherwise, we can also consider that the y coordinate of the finger tips 

should be higher than the one of the major knuckles, keeping in mind that 

the top of the screen is equal to 0 and the lower the keypoint, the higher 

the y value.

We’ll be able to play around with the data returned in the annotations 

object to see if this is accurate and can be used to detect the “rock” gesture.

Figure 5-39. “Rock” gesture visualized

Figure 5-40. “Paper” gesture visualized
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In the “paper” gesture, all fingers are straight so we can use mainly 

the y coordinates of different fingers. For example, we could check if the y 

value of the last point of each finger (at the tips) is less than the y value of 

the palm or the base of each finger.

Figure 5-41. “Scissors” gesture visualized

Finally, the “scissors” gesture could be recognized by looking at the 

space in x axis between the index finger and the middle finger, as well as 

the y coordinate of the other fingers.

If the y value of the tip of the ring finger and little finger is lower than 

their base, they are probably folded.

Reusing the code samples we have gone through in the previous 

sections, let’s look into how we can write the logic to recognize and 

differentiate these gestures.

If we start with the “rock” gesture, here is how we could check if the y 

coordinate of each finger is higher than the one of the base knuckle.
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Listing 5-36. Logic to check if the index finger is folded

let indexBase = predictions[0].annotations.indexFinger[0][1];

let indexTip = predictions[0].annotations.indexFinger[3][1];

if (indexTip > indexBase) {

  console.log("index finger folded");

}

We can start by declaring two variables, one to store the y position of 

the base of the index finger and one for the tip of the same finger.

Looking back at the data from the annotations object when a finger is 

present on screen, we can see that, for the index finger, we get an array of 4 

arrays representing the x, y, and z coordinates of each key point.

Figure 5-42. Output data when a hand is detected

The y coordinate in the first array has a value of about 352.27 and the 

y coordinate in the last array has a value of about 126.62, which is lower, 

so we can deduce that the first array represents the position of the base of 

the index finger, and the last array represents the keypoint at the tip of that 

finger.
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We can test that this information is correct by writing the if statement 

shown earlier that logs the message “index finger folded” if the value of 

indexTip is higher than the one of indexBase.

And it works!

If you test this code by placing your hand in front of the camera and 

switch from holding your index finger straight and then folding it, you 

should see the message being logged in the console!

If we wanted to keep it really quick and simpler, we could stop here 

and decide that this single check determines the “rock” gesture. However, 

if we would like to have more confidence in our gesture, we could repeat 

the same process for the middle finger, ring finger, and little finger.

The thumb would be a little different as we would check the difference 

in x coordinate rather than y, because of the way this finger folds.

For the “paper” gesture, as all fingers are extended, we could check 

that the tip of each finger has a smaller y coordinate than the base.

Here’s what the code could look like to verify that.

Listing 5-37. Check the y coordinate of each finger for the “paper” 

gesture

let indexBase = predictions[0].annotations.indexFinger[0][1];

let indexTip = predictions[0].annotations.indexFinger[3][1];

let thumbBase = predictions[0].annotations.thumb[0][1];

let thumbTip = predictions[0].annotations.thumb[3][1];

let middleBase = predictions[0].annotations.middleFinger[0][1];

let middleTip = predictions[0].annotations.middleFinger[3][1];

let ringBase = predictions[0].annotations.ringFinger[0][1];

let ringTip = predictions[0].annotations.ringFinger[3][1];

let pinkyBase = predictions[0].annotations.pinky[0][1];

let pinkyTip = predictions[0].annotations.pinky[3][1];
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let indexExtended = indexBase > indexTip ? true : false;

let thumbExtended = thumbBase > thumbTip ? true : false;

let middleExtended = middleBase > middleTip ? true : false;

let ringExtended = ringBase > ringTip ? true : false;

let pinkyExtended = pinkyBase > pinkyTip ? true : false;

if (indexExtended && thumbExtended && middleExtended && 

ringExtended &&

      pinkyExtended) {

      console.log("paper gesture!");

    } else {

      console.log("other gesture");

    }

We start by storing the coordinates we are interested in into variables 

and then compare their values to set the extended states to true or false.

If all fingers are extended, we log the message “paper gesture!”.

If everything is working fine, you should be able to place your hand 

in front of the camera with all fingers extended and see the logs in the 

browser’s console.

If you change to another gesture, the message “other gesture” should 

be logged.
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Figure 5-43. Screenshot of hand detected in the webcam feed and 
paper gesture logged in the console
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Finally, detecting the “scissors” gesture can be done by looking at the 

changes of x coordinates for the tips of the index and middle fingers, as 

well as making sure the other fingers are not extended.

Listing 5-38. Check the difference in x coordinate for the index and 

middle finger tips

let indexTipX = predictions[0].annotations.indexFinger[3][0];

let middleTipX = predictions[0].annotations.middleFinger[3][0];

let diffFingersX =

       indexTipX > middleTipX ? indexTipX - middleTipX : 

middleTipX - indexTipX;

console.log(diffFingersX);

Figure 5-44. Screenshot of hand detected in the webcam feed and 
other gesture logged in the console
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The following are two screenshots of the data we get back with this 

code sample.

Figure 5-45. Output data when executing a “scissors” gesture
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We can see that when we do the “scissors” gesture, the value of the 

diffFingersX variable is much higher than when the two fingers are close 

together.

Looking at this data, we could decide that our threshold could be 100. 

If the value of diffFingersX is more than 100 and the ring and little fingers 

are folded, the likelihood of the gesture being “scissors” is very high.

So, altogether, we could check this gesture with the following code 

sample.

Listing 5-39. Detect “scissors” gesture

let ringBase = predictions[0].annotations.ringFinger[0][1];

let ringTip = predictions[0].annotations.ringFinger[3][1];

let pinkyBase = predictions[0].annotations.pinky[0][1];

let pinkyTip = predictions[0].annotations.pinky[3][1];

Figure 5-46. Output data when executing another gesture
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let ringExtended = ringBase > ringTip ? true : false;

let pinkyExtended = pinkyBase > pinkyTip ? true : false;

let indexTipX = predictions[0].annotations.indexFinger[3][0];

let middleTipX = predictions[0].annotations.middleFinger[3][0];

let diffFingersX =

      indexTipX > middleTipX ? indexTipX - middleTipX : 

middleTipX - indexTipX;

if (diffFingersX > 100 && !ringExtended && !pinkyExtended) {

  console.log("scissors gesture!");

}

Now that we wrote the logic to detect the gestures separately, let’s put it 

all together.

Figure 5-47. Screenshot of “scissors” gesture detection working
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Listing 5-40. Logic for detecting all gestures

let indexBase = predictions[0].annotations.indexFinger[0][1];

let indexTip = predictions[0].annotations.indexFinger[3][1];

let thumbBase = predictions[0].annotations.thumb[0][1];

let thumbTip = predictions[0].annotations.thumb[3][1];

let middleBase = predictions[0].annotations.middleFinger[0][1];

let middleTip = predictions[0].annotations.middleFinger[3][1];

let ringBase = predictions[0].annotations.ringFinger[0][1];

let ringTip = predictions[0].annotations.ringFinger[3][1];

let pinkyBase = predictions[0].annotations.pinky[0][1];

let pinkyTip = predictions[0].annotations.pinky[3][1];

let indexExtended = indexBase > indexTip ? true : false;

let thumbExtended = thumbBase > thumbTip ? true : false;

let middleExtended = middleBase > middleTip ? true : false;

let ringExtended = ringBase > ringTip ? true : false;

let pinkyExtended = pinkyBase > pinkyTip ? true : false;

if (

      indexExtended &&

      thumbExtended &&

      middleExtended &&

      ringExtended &&

      pinkyExtended

) {

  console.log("paper gesture!");

}

/* Rock gesture */

if (!indexExtended && !middleExtended && !ringExtended && 

!pinkyExtended) {

   console.log("rock gesture!");

}
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/* Scissors gesture */

let indexTipX = predictions[0].annotations.indexFinger[3][0];

let middleTipX = predictions[0].annotations.middleFinger[3][0];

let diffFingersX =

       indexTipX > middleTipX ? indexTipX - middleTipX : 

middleTipX - indexTipX;

if (diffFingersX > 100 && !ringExtended && !pinkyExtended) {

  console.log("scissors gesture!");

}

If everything works properly, you should see the correct message being 

logged in the console when you do each gesture!

Once you have verified that the logic works, you can move on from 

using console.log and use this to build a game or use these gestures as a 

controller for your interface, and so on.

The most important thing is to understand how the model works, 

get familiar with building logic using coordinates so you can explore the 

opportunities, and be conscious of some of the limits.

5.2.3  PoseNet
Finally, the last body tracking model we are going to talk about is called 

PoseNet.

PoseNet is a pose detection model that can estimate a single pose or 

multiple poses in an image or video.

Similarly to the Facemesh and Handpose models, PoseNet tracks the 

position of keypoints in a user’s body.
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The following is an example of these key points visualized.

Figure 5-48. Visualization of the keypoints detected by PoseNet. 
Source: https://github.com/tensorflow/tfjs-models/tree/
master/posenet

This body tracking model can detect 17 keypoints and their 2D 

coordinates, indexed by part ID.
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Figure 5-49. List of keypoints and their ID. Source: https://github.
com/tensorflow/tfjs-models/tree/master/posenet
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Even though this model is also specialized in tracking a person’s body 

using the webcam feed, using it in your code is a little bit different from the 

two models we covered in the previous sections.

 Importing and loading the model

Importing and loading the model follows the same standard as most of the 

code samples in this book.

Listing 5-41. Import TensorFlow.js and the PoseNet model in HTML

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></

script>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/

posenet"></script>

Listing 5-42. Loading the model in JavaScript

const net = await posenet.load();

This default way of loading PoseNet uses a faster and smaller model 

based on the MobileNetV1 architecture. The trade-off for speed is a lower 

accuracy.

If you want to experiment with the parameters, you can also load it this 

way.

Listing 5-43. Alternative ways of loading the model

const net = await posenet.load({

  architecture: 'MobileNetV1',

  outputStride: 16,

  inputResolution: { width: 640, height: 480 },

  multiplier: 0.75

});
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If you want to try the second configuration available, you can indicate 

that you’d like to use the other model based on the ResNet50 architecture 

that has better accuracy but is a larger model, so will take more time to 

load.

Listing 5-44. Loading the model using the ResNet50 architecture

const net = await posenet.load({

  architecture: 'ResNet50',

  outputStride: 32,

  inputResolution: { width: 257, height: 200 },

  quantBytes: 2

});

If you feel a bit confused by the different parameters, don’t worry, as 

you get started, using the default ones provided is completely fine. If you 

want to learn more about them, you can find more information in the 

official TensorFlow documentation.

Once the model is loaded, you can focus on predicting poses.

 Predictions

To get predictions from the model, you mainly need to call the 

estimateSinglePose method on the model.

Listing 5-45. Predicting single poses

const pose = await net.estimateSinglePose(image, {

  flipHorizontal: false

});

The image parameter can either be some imageData, an HTML 

image element, an HTML canvas element, or an HTML video element. It 

represents the input image you want to get predictions on.
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The flipHorizontal parameter indicates if you would like to flip/

mirror the pose horizontally. By default, its value is set to false.

If you are using videos, it should be set to true if the video is by default 

flipped horizontally (e.g., when using a webcam).

The preceding code sample will set the variable pose to a single pose 

object that will contain a confidence score and an array of keypoints 

detected, with their 2D coordinates, the name of the body part, and a 

probability score.

The following is an example of the object that will be returned.

Listing 5-46. Complete object returned as predictions

{

  "score": 0.32371445304906,

  "keypoints": [

    {

      "position": {

        "y": 76.291801452637,

        "x": 253.36747741699

      },

      "part": "nose",

      "score": 0.99539834260941

    },

    {

      "position": {

        "y": 71.10383605957,

        "x": 253.54365539551

      },

      "part": "leftEye",

      "score": 0.98781454563141

    },

Chapter 5  experimenting with inputs



225

    {

      "position": {

        "y": 71.839515686035,

        "x": 246.00454711914

      },

      "part": "rightEye",

      "score": 0.99528175592422

    },

    {

      "position": {

        "y": 72.848854064941,

        "x": 263.08151245117

      },

      "part": "leftEar",

      "score": 0.84029853343964

    },

    {

      "position": {

        "y": 79.956565856934,

        "x": 234.26812744141

      },

      "part": "rightEar",

      "score": 0.92544466257095

    },

    {

      "position": {

        "y": 98.34538269043,

        "x": 399.64068603516

      },

      "part": "leftShoulder",

      "score": 0.99559044837952

    },
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    {

      "position": {

        "y": 95.082359313965,

        "x": 458.21868896484

      },

      "part": "rightShoulder",

      "score": 0.99583911895752

    },

    {

      "position": {

        "y": 94.626205444336,

        "x": 163.94561767578

      },

      "part": "leftElbow",

      "score": 0.9518963098526

    },

    {

      "position": {

        "y": 150.2349395752,

        "x": 245.06030273438

      },

      "part": "rightElbow",

      "score": 0.98052614927292

    },

    {

      "position": {

        "y": 113.9603729248,

        "x": 393.19735717773

      },

      "part": "leftWrist",

      "score": 0.94009721279144

    },
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    {

      "position": {

        "y": 186.47859191895,

        "x": 257.98034667969

      },

      "part": "rightWrist",

      "score": 0.98029226064682

    },

    {

      "position": {

        "y": 208.5266418457,

        "x": 284.46710205078

      },

      "part": "leftHip",

      "score": 0.97870296239853

    },

    {

      "position": {

        "y": 209.9910736084,

        "x": 243.31219482422

      },

      "part": "rightHip",

      "score": 0.97424703836441

    },

    {

      "position": {

        "y": 281.61965942383,

        "x": 310.93188476562

      },

      "part": "leftKnee",

      "score": 0.98368924856186

    },
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    {

      "position": {

        "y": 282.80120849609,

        "x": 203.81164550781

      },

      "part": "rightKnee",

      "score": 0.96947449445724

    },

    {

      "position": {

        "y": 360.62716674805,

        "x": 292.21047973633

      },

      "part": "leftAnkle",

      "score": 0.8883239030838

    },

    {

      "position": {

        "y": 347.41177368164,

        "x": 203.88229370117

      },

      "part": "rightAnkle",

      "score": 0.8255187869072

    }

  ]

}

If you would like to detect multiple poses, if you expect an image or 

video to contain multiple people, you can change the method called to be 

as follows.
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Listing 5-47. Predicting multiple poses

const poses = await net.estimateMultiplePoses(image, {

  flipHorizontal: false,

  maxDetections: 5,

  scoreThreshold: 0.5,

  nmsRadius: 20

});

We can see that some additional parameters are passed in.

• maxDetections indicates the maximum number of 

poses we’d like to detect. The value 5 is the default but 

you can change it to more or less.

• scoreThreshold indicates that you only want instances 

to be returned if the score value at the root of the object 

is higher than the value set. 0.5 is the default value.

• nmsRadius stands for nonmaximum suppression and 

indicates the amount of pixels that should separate 

multiple poses detected. The value needs to be strictly 

positive and defaults to 20.

Using this method will set the value of the variable poses to an array of 

pose objects, like the following.

Listing 5-48. Output array when detecting multiple poses

[

  // Pose 1

  {

    // Pose score

    "score": 0.42985695206067,

    "keypoints": [
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      {

        "position": {

          "x": 126.09371757507,

          "y": 97.861720561981

        },

        "part": "nose",

        "score": 0.99710708856583

      },

      {

        "position": {

          "x": 132.53466176987,

          "y": 86.429876804352

        },

        "part": "leftEye",

        "score": 0.99919074773788

      },

      ...

    ],

  },

  // Pose 2

  {

    // Pose score

    "score": 0.13461434583673,

    "keypoints": [

      {

        "position": {

          "x": 116.58444058895,

          "y": 99.772533416748

        },

        "part": "nose",

        "score": 0.0028593824245036

      }
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      {

        "position": {

          "x": 133.49897611141,

          "y": 79.644590377808

        },

        "part": "leftEye",

        "score": 0.99919074773788

      },

      ...

    ],

  }

]

 Full code sample

Altogether, the code sample to set up the prediction of poses in an image is 

as follows.

Listing 5-49. HTML code to detect poses in an image

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

    <title>PoseNet</title>

  </head>

  <body>

     <!—- you can replace the path to the asset with any you'd 

like -—>

    <img src="image-pose.jpg" alt="" />

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs"></script>

Chapter 5  experimenting with inputs



232

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/posenet"></script>

    <script src="index.js"></script>

  </body>

</html>

Listing 5-50. JavaScript code

const imageElement = document.getElementsByTagName("img")[0];

posenet

  .load()

  .then(function (net) {

    const pose = net.estimateSinglePose(imageElement, {

      flipHorizontal: true,

    });

    return pose;

  })

  .then(function (pose) {

    console.log(pose);

  })

  .catch((err) => console.log(err));

For a video from the webcam feed, the code should be as follows.

Listing 5-51. HTML code to detect poses in a video

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width,  

initial-scale=1.0" />

    <title>PoseNet</title>

  </head>

Chapter 5  experimenting with inputs



233

  <body>

    <video></video>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/posenet"></script>

    <script src="index.js"></script>

  </body>

</html>

Listing 5-52. JavaScript code to detect poses in a video from the 

webcam

let video;

let model;

const init = async () => {

  video = await loadVideo();

  model = await posenet.load();

  main();

};

const loadVideo = async () => {

  const video = await setupCamera();

  video.play();

  return video;

};

const setupCamera = async () => {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(
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       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }

  video = document.querySelector("video");

  video.width = window.innerWidth;

  video.height = window.innerHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: window.innerWidth,

      height: window.innerHeight,

    },

  });

  video.srcObject = stream;

  return new Promise(

     (resolve) => (video.onloadedmetadata = () => 

resolve(video))

  );

};

init();

const main = () => {

  const pose = model

    .estimateSinglePose(video, {

      flipHorizontal: true,

    })
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    .then((pose) => {

      console.log(pose);

    });

  requestAnimationFrame(main);

};

 Visualizing keypoints

So far, we’ve mainly used console.log to be able to see the results coming 

back from the model. However, you might want to visualize them on the 

page to make sure that the body tracking is working and that the keypoints 

are placed in the right position.

To do this, we are going to use the Canvas API.

We need to start by adding a HTML canvas element to the HTML file. 

Then, we can create a function that will access this element and its context, 

detect the poses, and draw the keypoints.

Accessing the canvas element and its context is done with the 

following lines.

Listing 5-53. Accessing the canvas element

const canvas = document.getElementById("output");

const ctx = canvas.getContext("2d");

canvas.width = window.innerWidth;

canvas.height = window.innerHeight;

Then, we can create a function that will call the estimateSinglePose 

method to start the detection, draw the video on the canvas, and loop 

through the keypoints found to render them on the canvas element.
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Listing 5-54. Start the detection, draw the webcam feed on a canvas 

element, and render the keypoints

async function poseDetectionFrame() {

    const pose = await net.estimateSinglePose(video, {

      flipHorizontal: true

    });

    ctx.clearRect(0, 0, videoWidth, videoHeight);

    ctx.save();

    ctx.scale(-1, 1);

    ctx.translate(-videoWidth, 0);

     ctx.drawImage(video, 0, 0, window.innerWidth, window.

innerHeight);

    ctx.restore();

    drawKeypoints(pose.keypoints, 0.5, ctx);

    drawSkeleton(pose.keypoints, 0.5, ctx);

    requestAnimationFrame(poseDetectionFrame);

}

The drawKeypoints and drawSkeleton functions use some of the 

Canvas API methods to draw circles and lines at the coordinates of the 

keypoints detected.

Listing 5-55. Some helper functions to draw the keypoints onto the 

canvas element

const color = "aqua";

const lineWidth = 2;

const toTuple = ({ y, x }) => [y, x];

function drawPoint(ctx, y, x, r, color) {

  ctx.beginPath();
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  ctx.arc(x, y, r, 0, 2 * Math.PI);

  ctx.fillStyle = color;

  ctx.fill();

}

function drawSegment([ay, ax], [by, bx], color, scale, ctx) {

  ctx.beginPath();

  ctx.moveTo(ax * scale, ay * scale);

  ctx.lineTo(bx * scale, by * scale);

  ctx.lineWidth = lineWidth;

  ctx.strokeStyle = color;

  ctx.stroke();

}

function drawSkeleton(keypoints, minConfidence, ctx, scale = 1) 

{

  const adjacentKeyPoints = posenet.getAdjacentKeyPoints(

    keypoints,

    minConfidence

  );

  adjacentKeyPoints.forEach((keypoints) => {

    drawSegment(

      toTuple(keypoints[0].position),

      toTuple(keypoints[1].position),

      color,

      scale,

      ctx

    );

  });

}
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function drawKeypoints(keypoints, minConfidence, ctx, scale = 1) {

  for (let i = 0; i < keypoints.length; i++) {

    const keypoint = keypoints[i];

    if (keypoint.score < minConfidence) {

      continue;

    }

    const { y, x } = keypoint.position;

    drawPoint(ctx, y * scale, x * scale, 3, color);

  }

}

The poseDetectionFrame function should be called once the video and 

model are loaded.

Altogether, the full code sample should look like the following.

Listing 5-56. Complete HTML code to visualize keypoints

<html lang="en">

  <head>

    <meta charset="UTF-8" />

     <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

    <title>PoseNet</title>

  </head>

  <body>

    <video id="video"></video>

    <canvas id="output" />

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs"></script>

     <script src="https://cdn.jsdelivr.net/npm/@tensorflow-

models/posenet"></script>
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    <script src="utils.js" type="module"></script>

    <script src="index.js" type="module"></script>

  </body>

</html>

Listing 5-57. JavaScript code to visualize keypoints in index.js

import { drawKeypoints, drawSkeleton } from "./utils.js";

const videoWidth = window.innerWidth;

const videoHeight = window.innerHeight;

async function setupCamera() {

   if (!navigator.mediaDevices || !navigator.mediaDevices.

getUserMedia) {

    throw new Error(

       "Browser API navigator.mediaDevices.getUserMedia not 

available"

    );

  }

  const video = document.getElementById("video");

  video.width = videoWidth;

  video.height = videoHeight;

  const stream = await navigator.mediaDevices.getUserMedia({

    audio: false,

    video: {

      facingMode: "user",

      width: videoWidth,

      height: videoHeight,

    },

  });

  video.srcObject = stream;
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  return new Promise((resolve) => {

    video.onloadedmetadata = () => {

      resolve(video);

    };

  });

}

async function loadVideo() {

  const video = await setupCamera();

  video.play();

  return video;

}

function detectPoseInRealTime(video, net) {

  const canvas = document.getElementById("output");

  const ctx = canvas.getContext("2d");

  const flipPoseHorizontal = true;

  canvas.width = videoWidth;

  canvas.height = videoHeight;

  async function poseDetectionFrame() {

    let minPoseConfidence;

    let minPartConfidence;

    const pose = await net.estimateSinglePose(video, {

      flipHorizontal: flipPoseHorizontal,

    });

    minPoseConfidence = 0.1;

    minPartConfidence = 0.5;

    ctx.clearRect(0, 0, videoWidth, videoHeight);
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    ctx.save();

    ctx.scale(-1, 1);

    ctx.translate(-videoWidth, 0);

    ctx.drawImage(video, 0, 0, videoWidth, videoHeight);

    ctx.restore();

    drawKeypoints(pose.keypoints, minPartConfidence, ctx);

    drawSkeleton(pose.keypoints, minPartConfidence, ctx);

    requestAnimationFrame(poseDetectionFrame);

  }

  poseDetectionFrame();

}

let net;

export async function init() {

  net = await posenet.load();

  let video;

  try {

    video = await loadVideo();

  } catch (e) {

    throw e;

  }

  detectPoseInRealTime(video, net);

}

navigator.getUserMedia =

  navigator.getUserMedia ||

  navigator.webkitGetUserMedia ||

  navigator.mozGetUserMedia;

init();
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Listing 5-58. JavaScript code to visualize keypoints in utils.js

const color = "aqua";

const lineWidth = 2;

function toTuple({ y, x }) {

  return [y, x];

}

export function drawPoint(ctx, y, x, r, color) {

  ctx.beginPath();

  ctx.arc(x, y, r, 0, 2 * Math.PI);

  ctx.fillStyle = color;

  ctx.fill();

}

export function drawSegment([ay, ax], [by, bx], color, scale, 

ctx) {

  ctx.beginPath();

  ctx.moveTo(ax * scale, ay * scale);

  ctx.lineTo(bx * scale, by * scale);

  ctx.lineWidth = lineWidth;

  ctx.strokeStyle = color;

  ctx.stroke();

}

export function drawSkeleton(keypoints, minConfidence, ctx, 

scale = 1) {

  const adjacentKeyPoints = posenet.getAdjacentKeyPoints(

    keypoints,

    minConfidence

  );
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  adjacentKeyPoints.forEach((keypoints) => {

    drawSegment(

      toTuple(keypoints[0].position),

      toTuple(keypoints[1].position),

      color,

      scale,

      ctx

    );

  });

}

export function drawKeypoints(keypoints, minConfidence, ctx, 

scale = 1) {

  for (let i = 0; i < keypoints.length; i++) {

    const keypoint = keypoints[i];

    if (keypoint.score < minConfidence) {

      continue;

    }

    const { y, x } = keypoint.position;

    drawPoint(ctx, y * scale, x * scale, 3, color);

  }

}
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The output of this code should visualize the keypoints like the 

following.

Figure 5-50. Output of the complete code sample
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Now that we have gone through the code to detect poses, access 

coordinates for different parts of the body, and visualize them on a canvas, 

feel free to experiment with this data to create projects exploring new 

interactions.

5.3  Hardware data
For the last section of this chapter and the last part of the book that will 

contain code samples, we are going to look into something a bit more 

advanced and experimental. The next few pages will focus on using data 

generated by hardware and build a custom machine learning model to 

detect gestures.

Usually, when working with hardware, I use microcontrollers such 

as Arduino or Raspberry Pi; however, to make it more accessible to 

anyone reading this book that might not have access to such material, 

Figure 5-51. Output of the complete code sample
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this next section is going to use another device that has built-in hardware 

components, your mobile phone!

This is assuming you possess a modern mobile phone with at least an 

accelerometer and gyroscope.

To have access to this data in JavaScript, we are going to use the 

Generic Sensor API.

This API is rather new and experimental and has browser support only 

in Chrome at the moment, so if you decide to write the following code 

samples, make sure to use Chrome as your browser.

Figure 5-52. Browser support for the Generic Sensor API. Source: 
https://caniuse.com/#search=sensor%20api

To build our gesture classifier, we are going to access and record data 

from the accelerometer and gyroscope present in your phone, save this 

data into files in your project, create a machine learning model, train it, 

and run predictions on new live data.

To be able to do this, we are going to need a little bit of Node.js, web 

sockets with socket.io, the Generic Sensor API, and TensorFlow.js.

If you are unfamiliar with some of these technologies, don’t worry, I’m 

going to explain each part and provide code samples you should be able to 

follow.
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5.3.1  Web Sensors API
As we are using hardware data in this section, the first thing we need to do 

is verify that we can access the correct data.

As said a little earlier, we need to record data from the gyroscope and 

accelerometer.

The gyroscope gives us details about the orientation of the device and 

its angular velocity, and the accelerometer focuses on giving us data about 

the acceleration.

Even though we could use only one of these sensors if we wanted, I 

believe that combining data of both gyroscope and accelerometer gives us 

more precise information about the motion and will be helpful for gesture 

recognition.

Figure 5-53. Accelerometer axes on mobile phone. Source: 
https://developers.google.com/web/fundamentals/native- 
hardware/device-orientation
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5.3.2  Accessing sensors data
To access the data using the Generic Sensor API, we need to start by 

declaring a few variables: one that will refer to the requestAnimationFrame 

statement so we can cancel it later on, and two others that will contain 

gyroscope and accelerometer data.

Listing 5-59. In index.js. Declaring variables to contain hardware 

data

let dataRequest;

let gyroscopeData = {

    x: '',

    y: '',

    z: ''

}

Figure 5-54. Gyroscope axes on mobile phone. Source: https://www.
sitepoint.com/using-device-orientation-html5/
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let accelerometerData = {

    x: '',

    y: '',

    z: ''

}

Then, to access the phone’s sensors data, you will need to instantiate 

a new Gyroscope and Accelerometer interface, use the reading event 

listener to get the x, y, and z coordinates of the device’s motion, and call 

the start method to start the tracking.

Listing 5-60. In index.js. Get accelerometer and gyroscope data

function initSensors() {

    let gyroscope = new Gyroscope({frequency: 60});

    gyroscope.addEventListener('reading', e => {

        gyroscopeData.x = gyroscope.x;

        gyroscopeData.y = gyroscope.y;

        gyroscopeData.z = gyroscope.z;

    });

    gyroscope.start();

    let accelerometer = new Accelerometer({frequency: 60});

    accelerometer.addEventListener('reading', e => {

        accelerometerData.x = accelerometer.x;

        accelerometerData.y = accelerometer.y;

        accelerometerData.z = accelerometer.z;

    });

    accelerometer.start();

}
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Finally, as we are interested in recording data when we are executing 

a specific gesture, we need to call the preceding function only when the 

user is pressing on the mobile screen with the touchstart event. We also 

should cancel it on touchend.

Listing 5-61. In index.js. Use the touchstart event listener to start 

displaying data

function getData() {

  let data = {

    xAcc: accelerometerData.x,

    yAcc: accelerometerData.y,

    zAcc: accelerometerData.z,

    xGyro: gyroscopeData.x,

    yGyro: gyroscopeData.y,

    zGyro: gyroscopeData.z,

  };

  document.body.innerHTML = JSON.stringify(data);

  dataRequest = requestAnimationFrame(getData);

}

window.onload = function () {

  initSensors();

  document.body.addEventListener("touchstart", (e) => {

    getData();

  });

  document.body.addEventListener("touchend", (e) => {

    cancelAnimationFrame(dataRequest);

  });

};
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At this point, if you want to check the output of this code, you will need 

to visit the page on your mobile phone using a tool like ngrok, for example, 

to create a tunnel to your localhost.

What you should see is the live accelerometer and gyroscope data 

displayed on the screen when you press it, and when you release it, the 

data should not update anymore.

At this point, we display the data on the page so we can double check 

that everything is working as expected.

However, what we really need is to store this data in file when we 

record gestures. For this, we are going to need web sockets to send the data 

from the front-end to a back-end server that will be in charge of writing the 

data to files in our application folder.

5.3.3  Setting up web sockets
To set up web sockets, we are going to use socket.io.

So far, in all previous examples, we only worked with HTML and 

JavaScript files without any back end.

If you have never written any Node.js before, you will need to install it 

as well as npm or yarn to be able to install packages.

Once you have these two tools set up, at the root of your project folder, 

in your terminal, write npm init to generate a package.json file that will 

contain some details about the project.

Once your package.json file is generated, in your terminal, write npm 

install socket.io to install the package.

Once this is done, add the following script tag in your HTML file.

Listing 5-62. Import the socket.io script in the HTML file

<script type="text/javascript" src="./../socket.io/socket.

io.js"></script>
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Now, you should be able to use socket.io in the front end. In your 

JavaScript file, start by instantiating it with const socket = io().

If you have any issue with setting up the package, feel free to refer to 

the official documentation.

Then, in our event listener for touchstart, we can use socket.io to 

send data to the server with the following data.

Listing 5-63. Send motion data via web sockets

socket.emit("motion data", `${accelerometerData.x} 

${accelerometerData.y} ${accelerometerData.z} 

${gyroscopeData.x} ${gyroscopeData.y} ${gyroscopeData.z}`);

We are sending the motion data as a string as we want to write these 

values down into files.

On touchend, we need to send another event indicating that we want 

to stop the emission of data with socket.emit('end motion data').

Altogether, our first JavaScript file should look like the following.

Listing 5-64. Complete JavaScript code in the index.js file

const socket = io();

let gyroscopeData = {

  x: "",

  y: "",

  z: "",

};

let accelerometerData = {

  x: "",

  y: "",

  z: "",

};
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let dataRequest;

function initSensors() {

  let gyroscope = new Gyroscope({ frequency: 60 });

  gyroscope.addEventListener("reading", (e) => {

    gyroscopeData.x = gyroscope.x;

    gyroscopeData.y = gyroscope.y;

    gyroscopeData.z = gyroscope.z;

  });

  gyroscope.start();

  let accelerometer = new Accelerometer({ frequency: 60 });

  accelerometer.addEventListener("reading", (e) => {

    accelerometerData.x = accelerometer.x;

    accelerometerData.y = accelerometer.y;

    accelerometerData.z = accelerometer.z;

  });

  accelerometer.start();

}

function getData() {

  dataRequest = requestAnimationFrame(getData);

  socket.emit(

    "motion data",

     ̀${accelerometerData.x} ${accelerometerData.y} 

${accelerometerData.z} ${gyroscopeData.x} 

${gyroscopeData.y} ${gyroscopeData.z}`

  );

}
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window.onload = function () {

  initSensors();

  document.body.addEventListener("touchstart", (e) => {

    getData();

  });

  document.body.addEventListener("touchend", (e) => {

    socket.emit("end motion data");

    cancelAnimationFrame(dataRequest);

  });

};

Now, let’s implement the server side of this project to serve our front-

end files, receive the data, and store it into text files.

First, we need to create a new JavaScript file. I personally named it 

server.js.

To serve our front-end files, we are going to use the express npm 

package. To install it, type npm install express —-save in your terminal.

Once installed, write the following code to create a '/record' route 

that will serve our index.html file.

Listing 5-65. Initial setup of the server.js file

const express = require("express");

const app = express();

var http = require("http").createServer(app);

app.use("/record", express.static(__dirname + '/'));

http.listen(process.env.PORT || 3000);

You should be able to type node server.js in your terminal, visit 

http://localhost:3000/record in your browser, and it should serve the 

index.html file we created previously.
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Now, let’s test our web sockets connection by requiring the socket.io 

package and write the back-end code that will receive messages from the 

front end.

At the top of the server.js file, require the package with const io = 

require('socket.io')(http).

Then, set up the connection and listen to events with the following 

data.

Listing 5-66. In server.js. Web sockets connection

io.on("connection", function (socket) {

  socket.on("motion data", function (data) {

    console.log(data);

  });

  socket.on("end motion data", function () {

    console.log('end');

  });

});

Now, restart the server, visit the page on ‘/record’ on your mobile, and 

you should see motion data logged in your terminal when you touch your 

mobile’s screen.

If you don’t see anything, double check that your page is served 
using https.

At this point, we know that the web sockets connection is properly set 

up, and the following step is to save this data into files in our application so 

we’ll be able to use it to train a machine learning algorithm.

To save files, we are going to use the Node.js File System module, so we 

need to start by requiring it with const fs = require('fs');.

Then, we are going to write some code that will be able to handle 

arguments passed when starting the server, so we can easily record new 

samples.
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For example, if we want to record three gestures, one performing the 

letter A in the air, the second the letter B, and the third the letter C, we 

want to be able to type node server.js letterA 1 to indicate that we are 

currently recording data for the letter A gesture (letterA parameter) and 

that this is the first sample (the 1 parameter).

The following code will handle these two arguments, store them in 

variables, and use them to name the new file created.

Listing 5-67. In server.js. Code to handle arguments passed in to 

generate file names dynamically

let stream;

let sampleNumber;

let gestureType;

let previousSampleNumber;

process.argv.forEach(function (val, index, array) {

  gestureType = array[2];

  sampleNumber = parseInt(array[3]);

  previousSampleNumber = sampleNumber;

  stream = fs.createWriteStream(

    `data/sample_${gestureType}_${sampleNumber}.txt`,

    { flags: "a" }

  );

});

Now, when starting the server, you will need to pass these two 

arguments (gesture type and sample number).

To actually write the data from the front end to these files, we need to 

write the following lines of code.
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Listing 5-68. In server.js. Code to create a file and stream when 

receiving data

socket.on("motion data", function (data) {

     /* This following line allows us to record new files 

without having to start/stop the server. On motion end,  

we increment the sampleNumber variable so when receiving 

new data, we deduce it is related to a new gesture and 

create a file with the correct sample number. */

    if (sampleNumber !== previousSampleNumber) {

      stream = fs.createWriteStream(

        `./data/sample_${gestureType}_${sampleNumber}.txt`,

        { flags: "a" }

      );

    }

    stream.write(`${data}\r\n`);

});

socket.on("end motion data", function () {

    stream.end();

    sampleNumber += 1;

});

We also close the stream when receiving the “end motion data” event 

so we stop writing motion data when the user has stopped touching their 

phone’s screen, as this means they’ve stopped executing the gesture we 

want to record.

To test this setup, start by creating an empty folder in your application 

called ‘data’, then type node server.js letterA 1 in your terminal, visit 

back the web page on your mobile, and execute the gesture of the letter A 

in the air while pressing the screen, and when releasing, you should see a 

new file named sample_letterA_1.text in the data folder, and it should 

contain gesture data!
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At this stage, we are able to get accelerometer and gyroscope data, 

send it to our server using web sockets, and save it into files in our 

application.

Listing 5-69. Complete code sample in the server.js file

const express = require("express");

const app = express();

const http = require("http").createServer(app);

const io = require('socket.io')(http);

const fs = require('fs');

let stream;

let sampleNumber;

let gestureType;

let previousSampleNumber;

app.use("/record", express.static(__dirname + '/'));

process.argv.forEach(function (val, index, array) {

  gestureType = array[2];

  sampleNumber = parseInt(array[3]);

  previousSampleNumber = sampleNumber;

  stream = fs.createWriteStream(

    `data/sample_${gestureType}_${sampleNumber}.txt`,

    { flags: "a" }

  );

});

io.on("connection", function (socket) {

  socket.on("motion data", function (data) {

    if (sampleNumber !== previousSampleNumber) {

      stream = fs.createWriteStream(

        `./data/sample_${gestureType}_${sampleNumber}.txt`,

Chapter 5  experimenting with inputs



259

        { flags: "a" }

      );

    }

    stream.write(`${data}\r\n`);

});

  socket.on("end motion data", function () {

    stream.end();

    sampleNumber += 1;

  });

});

http.listen(process.env.PORT || 3000);

Before moving on to writing the code responsible for formatting our 

data and creating the machine learning model, make sure to record a few 

samples of data for each of our three gestures; the more, the better, but I 

would advise to record at least 20 samples per gesture.

5.3.4  Data processing
For this section, I would advise to create a new JavaScript file. I personally 

called it train.js.

In this file, we are going to read through the text files we recorded in 

the previous step, transform the data from strings to tensors, and create 

and train our model. Some of the following code samples are not directly 

related to TensorFlow.js (reading folders and files, and formatting the data 

into multidimensional arrays), so I will not dive into them too much.

The first step here is to go through our data folder, get the data for each 

sample and gesture, and organize it into arrays of features and labels.

For this, I used the line-reader npm package, so we need to install it 

using npm install line-reader.
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We also need to install TensorFlow with npm install @tensorflow/

tfjs-node.

Then, I created two functions readDir and readFile to loop through 

all the files in the data folder and for each file, loop through each line, 

transform strings into numbers, and return an object containing the label 

and features for that gesture.

Listing 5-70. In train.js. Loop through files to transform raw data 

into objects of features and labels

const lineReader = require("line-reader");

var fs = require("fs");

const tf = require("@tensorflow/tfjs-node");

const gestureClasses = ["letterA", "letterB", "letterC"];

let numClasses = gestureClasses.length;

let numSamplesPerGesture = 20; // the number of times you 

recorded each gesture.

let totalNumDataFiles = numSamplesPerGesture * numClasses;

let numPointsOfData = 6; // x, y, and z for both accelerometer 

and gyroscope

let numLinesPerFile = 100; // Files might have a different 

amount of lines so we need a value to truncate and make sure 

all our samples have the same length.

let totalNumDataPerFile = numPointsOfData * numLinesPerFile;

function readFile(file) {

  let allFileData = [];

  return new Promise((resolve, reject) => {

    fs.readFile(`data/${file}`, "utf8", (err, data) => {

      if (err) {

        reject(err);

      } else {
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        lineReader.eachLine(`data/${file}`, function (line) {

          // Turn each line into an array of floats.

          let dataArray = line

            .split(" ")

            .map((arrayItem) => parseFloat(arrayItem));

          allFileData.push(...dataArray);

          let concatArray = [...allFileData];

          if (concatArray.length === totalNumDataPerFile) {

            // Get the label from the filename

            let label = file.split("_")[1];

            let labelIndex = gestureClasses.indexOf(label);

             // Return an object with data as features and the 

label index

            resolve({ features: concatArray, label: labelIndex });

          }

        });

      }

    });

  });

}

const readDir = () =>

  new Promise((resolve, reject) =>

    fs.readdir(`data/`, "utf8", (err, data) =>

      err ? reject(err) : resolve(data)

    )

  );

(async () => {

  const filenames = await readDir();

  let allData = [];
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  filenames.map(async (file) => {

    let originalContent = await readFile(file);

    allData.push(originalContent);

    if (allData.length === totalNumDataFiles) {

      console.log(allData);

    }

  });

})();

I am not going to dive deeper into the preceding code sample, but I 

added some inline comments to help.

If you run this code using node train.js, you should get some output 

similar to the following figure.
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Figure 5-55. Sample output of formatted data
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At this point, our variable allData holds all features and labels for 

each gesture sample, but we are not done yet. Before feeding this data to 

a machine learning algorithm, we need to transform it to tensors, the data 

type that TensorFlow.js works with.

The following code samples are going to be more complicated as 

we need to format the data further, create tensors, split them between 

a training set and a test set to validate our future predictions, and then 

generate the model.

I have added inline comments to attempt to explain each step.

So, where we wrote console.log(allData) in the preceding code, 

replace it with format(allData), and the following is going to show the 

implementation of this function.

Listing 5-71. In train.js. Sorting and formatting the data

let justFeatures = [];

let justLabels = [];

const format = (allData) => {

  //  Sort all data by label to get [{label: 0, features: ...}, 

{label: 1, features: ...}];

   let sortedData = allData.sort((a, b) => (a.label > b.label ? 

1 : -1));

 // Tensorflow works with arrays and not objects so we need to 

separate labels and tensors.

  sortedData.map((item) => {

     createMultidimentionalArrays(justLabels, item.label,  

item.label);

     createMultidimentionalArrays(justFeatures, item.label, 

item.features);

  });

};
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function createMultidimentionalArrays(dataArray, index, item) {

  !dataArray[index] && dataArray.push([]);

  dataArray[index].push(item);

}

Running this should result in justFeatures and justLabels 

being multidimensional arrays containing features and labels indices, 

respectively.

For example, justLabels should look like [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ 2, 2, 

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] ].

Now that we are getting closer to a format TensorFlow can work with, 

we still need to transform these multidimensional arrays to tensors. To do 

this, let’s start by creating a function called transformToTensor.

Listing 5-72. In train.js. Transforming multidimensional arrays into 

tensors

const [

    trainingFeatures,

    trainingLabels,

    testingFeatures,

    testingLabels,

] = transformToTensor(justFeatures, justLabels);

const transformToTensor = (features, labels) => {

  return tf.tidy(() => {

     // Preparing to split the dataset between training set and 

test set.

    const featureTrainings = [];

    const labelTrainings = [];

    const featureTests = [];

    const labelTests = [];
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     // For each gesture trained, convert the data to tensors 

and store it between training set and test set.

    for (let i = 0; i < gestureClasses.length; ++i) {

      const [

        featureTrain,

        labelTrain,

        featureTest,

        labelTest,

      ] = convertToTensors(features[i], labels[i], 0.2);

      featureTrainings.push(featureTrain);

      labelTrainings.push(labelTrain);

      featureTests.push(featureTest);

      labelTests.push(labelTest);

    }

    // Return all data concatenated

    return [

      tf.concat(featureTrainings, 0),

      tf.concat(labelTrainings, 0),

      tf.concat(featureTests, 0),

      tf.concat(labelTests, 0),

    ];

  });

};

The preceding code calls a function called convertToTensors so let’s 

define it.
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Listing 5-73. In train.js. Convert data to tensors

const convertToTensors = (featuresData, labelData, testSplit) 

=> {

  if (featuresData.length !== labelData.length) {

    throw new Error(

       "features set and labels set have different numbers of 

examples"

    );

  }

   // Shuffle the data to avoid having a model that gets used to 

the order of the samples.

  const [shuffledFeatures, shuffledLabels] = shuffleData(

    featuresData,

    labelData

  );

  // Create the tensor

  const featuresTensor = tf.tensor2d(shuffledFeatures, [

    numSamplesPerGesture,

    totalNumDataPerFile,

  ]);

   // Create a 1D `tf.Tensor` to hold the labels, and convert 

the number label from the set {0, 1, 2} into one-hot encoding 

(e.g., 0 --> [1, 0, 0]).

  const labelsTensor = tf.oneHot(

    tf.tensor1d(shuffledLabels).toInt(),

    numClasses

  );

   // Split all this data into training set and test set and 

return it.

  return split(featuresTensor, labelsTensor, testSplit);

};
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This function calls two other functions, shuffleData and split.

Listing 5-74. In train.js. Shuffle the data

const shuffleData = (features, labels) => {

  const indices = [...Array(numSamplesPerGesture).keys()];

  tf.util.shuffle(indices);

  const shuffledFeatures = [];

  const shuffledLabels = [];

  features.map((featuresArray, index) => {

    shuffledFeatures.push(features[indices[index]]);

    shuffledLabels.push(labels[indices[index]]);

  });

  return [shuffledFeatures, shuffledLabels];

};

Listing 5-75. In train.js. Split the data into training and test set

const split = (featuresTensor, labelsTensor, testSplit) => {

  //  Split the data into a training set and a test set, based 

on `testSplit`.

   const numTestExamples = Math.round(numSamplesPerGesture * 

testSplit);

   const numTrainExamples = numSamplesPerGesture - 

numTestExamples;

  const trainingFeatures = featuresTensor.slice(

    [0, 0],

    [numTrainExamples, totalNumDataPerFile]

  );
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  const testingFeatures = featuresTensor.slice(

    [numTrainExamples, 0],

    [numTestExamples, totalNumDataPerFile]

  );

  const trainingLabels = labelsTensor.slice(

    [0, 0],

    [numTrainExamples, numClasses]

  );

  const testingLabels = labelsTensor.slice(

    [numTrainExamples, 0],

    [numTestExamples, numClasses]

  );

  return [trainingFeatures, trainingLabels, testingFeatures, 

testingLabels];

};

At this point, if you add a console.log statement in the code to log the 

trainingFeatures variable in the format function, you should get a tensor 

as output.

Listing 5-76. Example of output tensor

Tensor {

  kept: false,

  isDisposedInternal: false,

  shape: [ 12, 600 ],

  dtype: 'float32',

  size: 7200,

  strides: [ 600 ],

  dataId: {},
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  id: 70,

  rankType: '2',

  scopeId: 0

}

The values in the “shape” array will differ depending on how many 

samples of data you train and the number of lines per file.

Altogether, the code sample starting from the format function should 

look like the following.

Listing 5-77. In train.js. Full code sample for formatting the data

const format = (allData) => {

   let sortedData = allData.sort((a, b) => (a.label > b.label ? 

1 : -1));

  sortedData.map((item) => {

     createMultidimentionalArrays(justLabels, item.label, item.

label);

     createMultidimentionalArrays(justFeatures, item.label, 

item.features);

  });

  const [

    trainingFeatures,

    trainingLabels,

    testingFeatures,

    testingLabels,

  ] = transformToTensor(justFeatures, justLabels);

};

function createMultidimentionalArrays(dataArray, index, item) {

  !dataArray[index] && dataArray.push([]);

  dataArray[index].push(item);

}
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const transformToTensor = (features, labels) => {

  return tf.tidy(() => {

    const featureTrainings = [];

    const labelTrainings = [];

    const featureTests = [];

    const labelTests = [];

    for (let i = 0; i < gestureClasses.length; ++i) {

      const [

        featureTrain,

        labelTrain,

        featureTest,

        labelTest,

      ] = convertToTensors(features[i], labels[i], 0.2);

      featureTrainings.push(featureTrain);

      labelTrainings.push(labelTrain);

      featureTests.push(featureTest);

      labelTests.push(labelTest);

    }

    return [

      tf.concat(featureTrainings, 0),

      tf.concat(labelTrainings, 0),

      tf.concat(featureTests, 0),

      tf.concat(labelTests, 0),

    ];

  });

};

const convertToTensors = (featuresData, labelData, testSplit) 

=> {

  if (featuresData.length !== labelData.length) {

    throw new Error(

Chapter 5  experimenting with inputs



272

       "features set and labels set have different numbers of 

examples"

    );

  }

  const [shuffledFeatures, shuffledLabels] = shuffleData(

    featuresData,

    labelData

  );

  const featuresTensor = tf.tensor2d(shuffledFeatures, [

    numSamplesPerGesture,

    totalNumDataPerFile,

  ]);

  const labelsTensor = tf.oneHot(

    tf.tensor1d(shuffledLabels).toInt(),

    numClasses

  );

  return split(featuresTensor, labelsTensor, testSplit);

};

const shuffleData = (features, labels) => {

  const indices = [...Array(numSamplesPerGesture).keys()];

  tf.util.shuffle(indices);

  const shuffledFeatures = [];

  const shuffledLabels = [];

  features.map((featuresArray, index) => {

    shuffledFeatures.push(features[indices[index]]);

    shuffledLabels.push(labels[indices[index]]);

  });

  return [shuffledFeatures, shuffledLabels];

};
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const split = (featuresTensor, labelsTensor, testSplit) => {

   const numTestExamples = Math.round(numSamplesPerGesture * 

testSplit);

   const numTrainExamples = numSamplesPerGesture - 

numTestExamples;

  const trainingFeatures = featuresTensor.slice(

    [0, 0],

    [numTrainExamples, totalNumDataPerFile]

  );

  const testingFeatures = featuresTensor.slice(

    [numTrainExamples, 0],

    [numTestExamples, totalNumDataPerFile]

  );

  const trainingLabels = labelsTensor.slice(

    [0, 0],

    [numTrainExamples, numClasses]

  );

  const testingLabels = labelsTensor.slice(

    [numTrainExamples, 0],

    [numTestExamples, numClasses]

  );

   return [trainingFeatures, trainingLabels, testingFeatures, 

testingLabels];

};

It is a lot to take in if you are new to machine learning and TensorFlow.

js, but we are almost there. Our data is formatted and split between a 

training set and a test set, so the last step is the creation of the model and 

the training.
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5.3.5  Creating and training the model
This part of the code is a bit arbitrary as there are multiple ways to create 

models and to pick values for parameters. However, you can copy the 

following code as a starting point and play around with different values 

later to see how they impact the accuracy of the model.

Listing 5-78. In train.js. Create, train, and save a model

const createModel = async (featureTrain, labelTrain, 

featureTest, labelTest) => {

  const params = { learningRate: 0.1, epochs: 40 };

  // Instantiate a sequential model

  const model = tf.sequential();

  // Add a few layers

  model.add(

    tf.layers.dense({

      units: 10,

      activation: "sigmoid",

      inputShape: [featureTrain.shape[1]],

    })

  );

   model.add(tf.layers.dense({ units: numClasses, activation: 

"softmax" }));

  model.summary();

  const optimizer = tf.train.adam(params.learningRate);

  model.compile({

    optimizer: optimizer,

    loss: "categoricalCrossentropy",

    metrics: ["accuracy"],

  });
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  // Train the model with our features and labels

  await model.fit(featureTrain, labelTrain, {

    epochs: params.epochs,

    validationData: [featureTest, labelTest],

  });

  // Save the model in our file system.

  await model.save("file://model");

  return model;

};

At the end of our format function, call this createModel function using 

createModel(trainingFeatures, trainingLabels, testingFeatures, 

testingLabels).

Now, if everything works fine and you run node train.js in your 

terminal, you should see the model training and find a model folder in your 

application!

In case something is not working as expected, here’s what the complete 

train.js file should look like.

Listing 5-79. Complete code sample in train.js

const lineReader = require("line-reader");

var fs = require("fs");

const tf = require("@tensorflow/tfjs-node");

let justFeatures = [];

let justLabels = [];

const gestureClasses = ["letterA", "letterB", "letterC"];

let numClasses = gestureClasses.length;

let numSamplesPerGesture = 5;

let totalNumDataFiles = numSamplesPerGesture * numClasses;

let numPointsOfData = 6;

let numLinesPerFile = 100;

let totalNumDataPerFile = numPointsOfData * numLinesPerFile;
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function readFile(file) {

  let allFileData = [];

  return new Promise((resolve, reject) => {

    fs.readFile(`data/${file}`, "utf8", (err, data) => {

      if (err) {

        reject(err);

      } else {

        lineReader.eachLine(`data/${file}`, function (line) {

          let dataArray = line

            .split(" ")

            .map((arrayItem) => parseFloat(arrayItem));

          allFileData.push(...dataArray);

          let concatArray = [...allFileData];

          if (concatArray.length === totalNumDataPerFile) {

            let label = file.split("_")[1];

            let labelIndex = gestureClasses.indexOf(label);

             resolve({ features: concatArray, label:  

labelIndex });

          }

        });

      }

    });

  });

}

const readDir = () =>

  new Promise((resolve, reject) =>

    fs.readdir(`data/`, "utf8", (err, data) =>

      err ? reject(err) : resolve(data)

    )

  );
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(async () => {

  const filenames = await readDir();

  let allData = [];

  filenames.map(async (file) => {

    let originalContent = await readFile(file);

    allData.push(originalContent);

    if (allData.length === totalNumDataFiles) {

      format(allData);

    }

  });

})();

const format = (allData) => {

   let sortedData = allData.sort((a, b) => (a.label > b.label ? 

1 : -1));

  sortedData.map((item) => {

     createMultidimentionalArrays(justLabels, item.label, item.

label);

     createMultidimentionalArrays(justFeatures, item.label, 

item.features);

  });

   const [trainingFeatures, trainingLabels, testingFeatures, 

testingLabels] = transformToTensor(justFeatures, justLabels);

   createModel(trainingFeatures, trainingLabels, 

testingFeatures, testingLabels);

};

function createMultidimentionalArrays(dataArray, index, item) {

  !dataArray[index] && dataArray.push([]);

  dataArray[index].push(item);

}
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const transformToTensor = (features, labels) => {

  return tf.tidy(() => {

    const featureTrainings = [];

    const labelTrainings = [];

    const featureTests = [];

    const labelTests = [];

    for (let i = 0; i < gestureClasses.length; ++i) {

       const [featureTrain, labelTrain, featureTest, labelTest] 

= convertToTensors(features[i], labels[i], 0.2);

      featureTrainings.push(featureTrain);

      labelTrainings.push(labelTrain);

      featureTests.push(featureTest);

      labelTests.push(labelTest);

    }

    const concatAxis = 0;

    return [

      tf.concat(featureTrainings, concatAxis),

      tf.concat(labelTrainings, concatAxis),

      tf.concat(featureTests, concatAxis),

      tf.concat(labelTests, concatAxis),

    ];

  });

};

const convertToTensors = (featuresData, labelData, testSplit) 

=> {

  if (featuresData.length !== labelData.length) {

    throw new Error(

       "features set and labels set have different numbers of 

examples"

    );

  }
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  const [shuffledFeatures, shuffledLabels] = shuffleData(

    featuresData, labelData);

  const featuresTensor = tf.tensor2d(shuffledFeatures, [

    numSamplesPerGesture,

    totalNumDataPerFile,

  ]);

  const labelsTensor = tf.oneHot(

    tf.tensor1d(shuffledLabels).toInt(),

    numClasses

  );

  return split(featuresTensor, labelsTensor, testSplit);

};

const shuffleData = (features, labels) => {

  const indices = [...Array(numSamplesPerGesture).keys()];

  tf.util.shuffle(indices);

  const shuffledFeatures = [];

  const shuffledLabels = [];

  features.map((featuresArray, index) => {

    shuffledFeatures.push(features[indices[index]]);

    shuffledLabels.push(labels[indices[index]]);

  });

  return [shuffledFeatures, shuffledLabels];

};

const split = (featuresTensor, labelsTensor, testSplit) => {

   const numTestExamples = Math.round(numSamplesPerGesture * 

testSplit);

   const numTrainExamples = numSamplesPerGesture - 

numTestExamples;
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  const trainingFeatures = featuresTensor.slice(

    [0, 0],

    [numTrainExamples, totalNumDataPerFile]

  );

  const testingFeatures = featuresTensor.slice(

    [numTrainExamples, 0],

    [numTestExamples, totalNumDataPerFile]

  );

  const trainingLabels = labelsTensor.slice(

    [0, 0],

    [numTrainExamples, numClasses]

  );

  const testingLabels = labelsTensor.slice(

    [numTrainExamples, 0],

    [numTestExamples, numClasses]

  );

  return [trainingFeatures, trainingLabels, testingFeatures, 

testingLabels];

};

const createModel = async (xTrain, yTrain, xTest, yTest) => {

  const params = { learningRate: 0.1, epochs: 40 };

  const model = tf.sequential();

  model.add(

    tf.layers.dense({

      units: 10,

      activation: "sigmoid",

      inputShape: [xTrain.shape[1]],

    })

  );
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   model.add(tf.layers.dense({ units: numClasses, activation: 

"softmax" }));

  model.summary();

  const optimizer = tf.train.adam(params.learningRate);

  model.compile({

    optimizer: optimizer,

    loss: "categoricalCrossentropy",

    metrics: ["accuracy"],

  });

  await model.fit(xTrain, yTrain, {

    epochs: params.epochs,

    validationData: [xTest, yTest],

  });

  await model.save("file://model");

  return model;

};

The training steps you should see in your terminal should look like the 

following figure.
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The output of the model shows us that the last step of the training 

showed an accuracy of 0.9, which is really good!

Now, to test this with live data, let’s move on to the last step of this 

project, using our model to generate predictions.

5.3.6  Live predictions
For this last step, let’s create a new JavaScript file called predict.js.

We are going to create a new endpoint called ‘/predict’, serve our 

index.html file, use similar web sockets code to send motion data from our 

phone to our server, and run live predictions.

A first small modification is in our initial index.js file in our front-end 

code. Instead of sending the motion data as a string, we need to replace it 

with the following data.

Figure 5-56. Sample output of the training steps
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Listing 5-80. In index.js. Update the shape of the motion data sent 

via web sockets

let data = {

    xAcc: accelerometerData.x,

    yAcc: accelerometerData.y,

    zAcc: accelerometerData.z,

    xGyro: gyroscopeData.x,

    yGyro: gyroscopeData.y,

    zGyro: gyroscopeData.z,

};

socket.emit("motion data", data);

As the live data is going to have to be fed to the model, it is easier to 

send an object of numbers rather than go through the same formatting we 

went during the training process.

Then, our predict.js file is going to look very similar to our server.

js file at the exception of an additional predict function that feeds live 

data to the model and generate a prediction about the gesture.

Listing 5-81. In predict.js. Complete code for the predict.js file

const tf = require("@tensorflow/tfjs-node");

const express = require("express");

const app = express();

var http = require("http").createServer(app);

const io = require("socket.io")(http);

let liveData = [];

let predictionDone = false;

let model;

const gestureClasses = ["letterA", "letterB", "letterC"];
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// Create new endpoint

app.use("/predict", express.static(__dirname + "/"));

io.on("connection", async function (socket) {

  // Load the model

  model = await tf.loadLayersModel("file://model/model.json");

  socket.on("motion data", function (data) {

    predictionDone = false;

     // This makes sure the data has the same shape as the one 

used during training. 600 represents 6 values (x,y,z for 

accelerometer and gyroscope), collected 100 times.

    if (liveData.length < 600) {

      liveData.push(

        data.xAcc,

        data.yAcc,

        data.zAcc,

        data.xGyro,

        data.yGyro,

        data.zGyro

      );

    }

  });

  socket.on("end motion data", function () {

    if (!predictionDone && liveData.length) {

      predictionDone = true;

      predict(model, liveData);

      liveData = [];

    }

  });

});
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const predict = (model, newSampleData) => {

  tf.tidy(() => {

    const inputData = newSampleData;

    // Create a tensor from live data

    const input = tf.tensor2d([inputData], [1, 600]);

    const predictOut = model.predict(input);

    // Access the highest probability

     const winner = gestureClasses[predictOut.argMax(-1).

dataSync()[0]];

    console.log(winner);

  });

};

http.listen(process.env.PORT || 3000);

If you run the preceding code sample using node predict.js, visit the 

page on '/predict' on your phone, and execute one of the three gestures 

we trained. While holding the screen down, you should see a prediction in 

the terminal once you release the screen!

When running live predictions, you might come across the following 

error. This happens when a gesture is executed too fast and the amount of 

data collected was lower than our 600 value, meaning the data does not 

have the correct shape for the model to use it. If you try again a bit slower, 

it should be working.

Figure 5-57. Possible error when a gesture is executed too fast
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Now that our live predictions work, you could move on to changing 

some parameters used to create the model to see how it impacts the 

predictions, or train different gestures, or even send the prediction back to 

the front end using web sockets to create an interactive application. The 

main goal of this last section was to cover the steps involved into creating 

your own machine learning model.

Over the last few pages we learned to access hardware data using the 

Generic Sensor API, set up a server and web sockets to communicate and 

share data, save motion data into files, process and transform it, as well as 

create, train, and use a model to predict live gestures!

Hopefully it gives you a better idea of all the possibilities offered by 

machine learning and TensorFlow.js.

However, it was a lot of new information if you are new to it, especially 

this last section was quite advanced and experimental, so I would not 

expect you to understand everything and feel completely comfortable yet.

Feel free to go back over the code samples, take your time, and play 

around with building small prototypes if you are interested.
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CHAPTER 6

Machine learning 
in production
Now that you hopefully feel more comfortable experimenting with 

machine learning and building applications using different models and 

inputs, let’s talk about the different aspects of putting machine learning 

models and systems into production.

Before we start, it is important to know that this chapter is not going 

to be a deep dive into how to set up a machine learning pipeline yourself 

using Kubernetes clusters, configuring load balancers, and so on, as this is 

in general a task taken on by a DevOps or infrastructure teams. However, it 

is important to understand the challenges that come with productionizing 

machine learning models, so we are instead going to explain some of 

them, as well as introduce a few different tools that should help you add 

machine learning in your production applications if you do not have the 

opportunity to work with a dedicated team.

6.1  Challenges
Putting machine learning in production creates a different set of 

challenges than the ones we might have had so far.

In the personal projects we have built in this book, we were the only 

user and we were running everything locally. We were more in a  proof- 

of- concept phase. In production, not only an application will be used 

https://doi.org/10.1007/978-1-4842-6418-8_6#DOI
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by hundreds, thousands, or even millions of users, it will also be built by 

multiple teams. As a result, your system will have to be able to adapt and 

handle more challenges.

6.1.1  Scalability
The purpose of putting machine learning models in production is to make 

it part of the application your users are interacting with every day. As a 

result, it should be able to handle a potential large amount of requests.

Either it be for a startup or a large corporation, running machine 

learning models requires a lot of CPUs, GPUs, and RAM, meaning you 

will have to make sure your system can support running the model for all 

users.

6.1.2  High availability
Most web applications you have worked on and will work on are expected 

to be available 24/7 to serve user requests.

If you decide to add machine learning models to these systems, they 

will also need to have a high availability.

No matter if you decide to update a model, scale it to a wider audience, 

or test new tools, it is very important to make sure the model is still 

running properly as you experiment.

6.1.3  Observability
The systems we work on are very volatile. Things can change very fast 

in many ways. Your user interface changes as you release new features, 

spikes of users can happen in different geographical locations, third-party 

providers can fail, and so on.
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Such volatility means that models and their predictions should be 

watched closely. Not only is it about verifying that the model is not failing 

to generate predictions, it is also about regularly checking if the inputs and 

outputs are correct.

6.1.4  Reusability
Depending on the models you have built and are running in your 

application, it is sometimes important to think about their reusability.

For example, the company booking.com runs multiple models in 

production including one to determine if a hotel is family-friendly.

Based on different criteria, a model can highlight family-friendly hotels 

in both the details page of a hotel or as a filter in the results page. Similarly 

to how different UI components can be reusable across a front-end 

application, building your models so they can be reused on different pages 

can ensure that you are making the most of them.

Creating and testing a machine learning model being a time- 

consuming task, model reutilization makes this investment more 

productive.

Moreover, reusability ensures that models can be shared between 

different teams facing similar problems and can avoid wasting time  

re- creating models from scratch.

Now that we’ve briefly covered a few of the challenges presented by 

productionizing machine learning models, let’s look into the life cycle of a 

ML project.

6.2  Machine learning life cycle
The following diagram is a visual guide for the concept of Continuous 

Delivery for Machine Learning (CD4ML) popularized by Martin Fowler.
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In this diagram, we can see outlined six different phases:

Model building is about understanding the problem, preparing the 

data, extracting features, and writing the initial code to create the model.

Model evaluation and experimentation is about selecting features, 

hyperparameter tuning, comparing algorithms, and overall experimenting 

with different solutions.

Productionizing the model is the step that goes from experimentation 

or research to preparing it for deployment.

Testing focuses on ensuring that the model and the code we are 

about to deploy to production behave as we expect, and that the results 

match the ones observed during the second phase of evaluation and 

experimentation.

Deployment is getting the model into production.

Finally, monitoring and observability is about ensuring that the 

model behaves as expected in the production environment.

Figure 6-1. Phases of Continuous Delivery for Machine Learning. 
Source: https://martinfowler.com/articles/cd4ml.html
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One of the main differences between a standard software project  

life cycle and a machine learning project is in the way these phases should 

repeat.

As the arrow suggests from the last phase (Monitoring and 

Observability) back to the first one (Model Building), we should make 

decisions about our models based on information collected after seeing 

how it behaves in production.

Models should be updated or abandoned based on this information.
Based on your application, your model needs to be regularly retrained 

with new data to avoid becoming obsolete.

For example, a platform like AutoScout24 that helps users sell their 

vehicles online uses machine learning to predict the price range at which 

people should sell their car, based on a few parameters including the 

brand, the year of production, and the model.

If they do not retrain their model regularly with real user data, their 

prediction will quickly be out of date and not represent the real value 

of their users’ vehicle on the market. As a result, people could either 

undersell or struggle to sell their car because the prices are not adjusted to 

the current market.

This cycle that retrains the model with new data can be done manually 

or automatically.

Also, not all of these phases have to be executed by the same engineers.

The first two phases of model building and experimentation can and/

or should be done by data scientists or machine learning engineers. The 

following phases should be undertaken by DevOps engineers or software 

engineers with experience in deploying applications to production, like the 

following image illustrates.
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Seeing how different parts of this life cycle are separated by types of 

engineer leads us to talk about machine learning systems

6.3  Machine learning systems
In this book, we have talked a lot about how to use pre-trained models and 

generate predictions; however, machine learning systems are made up of a 

lot more components.

For example, if you cannot find a pre-trained models for your 

application and decide to create your own, you will also need to think 

about data collection, verification, feature extraction, and monitoring, as 

the following figure shows.

Figure 6-2. Types of engineers per phase.
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Using a machine learning model in production requires you to set up a 

certain pipeline.

Not only your model needs to be served, but you will need to think 

about how to collect new data and retrain your model so it does not 

become obsolete, how and what to monitor, and so on.

Luckily, you do not need to build all of these components yourself. 

Platforms like TensorFlow Extended (TFX) offer an end-to-end solution for 

deploying production ML pipelines.

TFX includes different components that can help you set up a machine 

learning pipeline like TensorFlow Data Validation to help you understand 

your data, TensorFlow Transform to help you preprocess your data and 

convert it between formats as needed, and TensorFlow Serving to support 

model versioning and ensuring high performance with concurrent models.

The benefit of using such platforms is that most of your ML pipeline 

can be set up in a single platform, reducing complexity in the setup and 

maintenance, as well as being able to leverage the work of dedicated teams 

at Google, to give you more confidence in the performance and reliability 

of your system.

Figure 6-3. Components of a machine learning system. Source: 
https://cloud.google.com/solutions/machine-learning/mlops- 
continuous- delivery-and-automation-pipelines-in-machine-
learning
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The following is an example of a typical TFX pipeline.

To get a better understanding of what TFX can do, let’s go through each 

of these components:

• First, ExampleGen is the initial input component that 

consumes external files and ingests the data into the 

pipeline.

• StatisticsGen is in charge of calculating statistics for 

the dataset that will be used to generate a schema.

• SchemaGen generates the schema that contains 

information about your input data, for example, data 

types for each feature or if the feature has to be present 

every time. An example of what a schema could look 

like is shown in the following image.

Figure 6-4. Standard TFX pipeline
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Figure 6-5. Example schema. Source: www.tensorflow.org/tfx/
guide/schemagen
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• ExampleValidator is used to identify anomalies in the 

training data.

• Transform will actually use the schema generated 

from the SchemaGen component and perform feature 

engineering on the data emitted from ExampleGen to 

generate a SavedModel instance that will be used by 

the following component.

• Trainer uses the Python TensorFlow API to train 

models.

• Tuner does hyperparameter tuning, meaning it 

chooses a set of optimal parameters to use with a 

model.

• Evaluator performs analysis on the results of your 

model to ensure that it is good to be pushed to 

production.

• InfraValidator is responsible for validating the model 

in the model serving infrastructure. It launches a sand- 

boxed model server with the model and checks if it can 

be loaded and queried.

• Pusher is the component pushing a validated model to 

a deployment target.

If this seems a bit complicated, it is totally normal. As I mentioned at 

the beginning of this chapter, I would not expect any person reading this 

book to understand straight away all the components needed in a machine 

learning pipeline.

As it is unlikely that you will have to set one up yourself, this 

information is mainly presented so you get an idea of the components 

involved in setting up a system when working with deploying a custom 

model.
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Now that we briefly went over what a standard TFX pipeline looks 

like, let’s go back and talk about pipelines more broadly. What are the 

necessities of building a pipeline?

If we look back at the image at the beginning of this section, the 

machine learning code to create the model actually represents a very small 

portion of the system.

The rest is composed of elements such as data collection, automation, 

testing, analysis, and so on, where you need to apply DevOps principles to 

ML systems.

This kind of system works similarly to a software system in the sense 

that you need it to be reliable and have short development cycles but 

differs in the following ways:

Diversity of skills: If you work on a production application that uses 

machine learning models, your team will likely involve data scientists 

that will need to interact with the system but may not have experience or 

knowledge of software practices. Your system will have to take this into 

account by having components ML researchers can use.

Figure 6-6. Components of a machine learning system. Source: 
https://cloud.google.com/solutions/machine-learning/mlops- 
continuous- delivery-and-automation-pipelines-in-machine-
learning
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Model serving: There seems to be three different ways to serve models 

in production. It can either be done with an embedded model where 

you treat it as a dependency packaged with the application, a model as a 
service (MAAS) where the model is wrapped in a separate service that can 

be deployed and updated independently, and a model as data where the 

model is also independent but ingested as data at runtime.

Experiment tracking: Machine learning models go through a lot of 

experimentation before being pushed to production, resulting in a lot of 

the code being thrown away and never being deployed. As a result, it is 

important to keep track of the different experiments being undertaken to 

avoid repeating them.

Monitoring: Even though monitoring and logging systems are usually 

also used in standard software projects, monitoring machine learning 

models is a bit different. Not only do we need to monitor that the model 

generates predictions when given input data, we also need to capture data 

about how our model is behaving using the following metrics – model 
inputs (track what data is being fed to the model), interpretability of 
outputs (understanding how models are making predictions), model 

outputs themselves, and model fairness (analysis outputs for bias).

Testing: Different types of tests can be introduced in a machine 

learning workflow. We can test the model quality by looking at error 

rates and accuracy, the validity of the data by comparing it to schemas 

generated, or even attempt to test model bias and fairness. The following is 

an example of test pyramid for machine learning systems.
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Even though this kind of system might be the responsibility of an 

infrastructure team, as a developer, you should still be involved in setting 

up a way for the application to interact with the model.

As a result, you will have to ask yourself questions such as the 

following:

• How to write an API that will generate predictions from 

the model?

• How to best deploy that API to production?

• What kind of data needs to be collected?

• What information should the API return?

Now that we briefly covered the different components of a machine 

learning system, let’s go through some of the tools currently available to 

make the use of machine learning in production easier.

Figure 6-7. Example of test pyramid. Source: https://
martinfowler.com/articles/cd4ml.html
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6.4  Tools
In this last section, we are going to quickly cover some tools you can use 

if you want to add machine learning in a production application without 

having to set up a complex system.

6.4.1  Pre-trained models
Hopefully, after going through the projects in this book, you are familiar 

with using pre-trained models with TensorFlow.js.

So far, we used the MobileNet image classification model, PoseNet, 

the Toxicity Classifier, speech commands, Facemesh, Handpose, and the 

Question Answering model; however, there are a few more.

Indeed, if you decide to explore further, you will see that there also 

exist a face landmark detection model, an object detection model, a body 

segmentation model, and a few more.

However, pre-trained models do not have to be developed by the 

TensorFlow.js team to be usable with TensorFlow.js.

Keras models typically created using Python can be saved in different 

formats and converted to TensorFlow.js Layers format to be loaded with 

the framework.

As a result, if you find an open source model you are interested in 

working with, feel free to check if it can be converted to the format that 

works with TensorFlow.js so you can load it in a JavaScript application.

6.4.2  APIs
To make it easier for developers to implement machine learning in 

production applications, technology companies like Amazon, Google, and 

Microsoft have been working on developing ML services available as APIs.
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For example, Amazon currently has multiple APIs for services 

including image and video analysis, personalized recommendations, real- 

time translation, advanced text analysis, chatbots, and fraud prevention.

For example, Amazon currently has APIs including

• Comprehend for advanced text analysis

• CodeGuru for automated code reviews

• Lex for chatbots

• Textract for document analysis

• Detector for fraud prevention

• Recognition for image and video analysis

• Polly for text to speech

Google Cloud offers APIs such as

• Vision AI: To get image insights, detect objects, faces, 

and text

• Video intelligence API: To recognize objects, places, 

and actions in stored and streaming video

• Speech-to-text API: To accurately convert speech into 

text

And Microsoft has a suite of tools called Cognitive Services with APIs 

including a content moderator service, a QnA Maker, a speaker recognition 

service that can identify and verify the people speaking based on audio, 

and similar APIs around image and text recognition.

6.4.3  Serving platforms
Finally, if you are more interested in building and serving a custom model, 

here are some tools that aim at making it simpler.
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The Google Cloud AI platform as well as Amazon Web Services and 

Microsoft offer more complete solutions for you to serve your custom 

machine learning projects; however, other model serving platforms can be 

found such as the open source BentoML, Seldon, or kaos by KI labs.

Figure 6-8. Features of kaos. Source: https://ki-labs.com/
kaos/#features
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Even though teams may be tempted to rely on tools from Google, 

Microsoft, or Amazon, these platforms do not often give you the freedom 

you may want in picking your tooling. They optimize for the use of their 

own offerings and sometimes make it complicated to integrate with other 

third-party tools.

Besides, depending on the size of your application, using these 

platforms may be overengineering.

Overall, there are multiple options available when it comes to 

productionizing machine learning models. However, as this is still 

something most companies are not doing, the standards are not set and 

will probably evolve. As a result, if this is an area you are interested in 

learning more about, you should definitely do some extra research and 

experimentation.
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CHAPTER 7

Bias in machine 
learning
In my opinion, this book would not be complete without mentioning the 

topic of bias in machine learning.

As we give the ability to computers to generate predictions and rely 

on them in production applications that people will interact with, it is 

essential to spend some time thinking about the consequences and impact 

of using this technology.

In this last chapter, we are going to talk about the different types of 

biases, why this is an issue and what can be done to minimize it in our 

machine learning systems.

7.1  What is bias?
If we refer to the definition from the Oxford dictionary, bias is

a strong feeling in favour of or against one group of people, or 
one side in an argument, often not based on fair judgement.

—Quote source:  
 www.oxfordlearnersdictionaries.com/definition/

english/bias_1?q=bias

https://doi.org/10.1007/978-1-4842-6418-8_7#DOI
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When it comes to data science, there can be different types of biases, 

including

• Confirmation bias: This can happen when the 

person performing the data analysis wants to prove 

a predetermined assumption and will intentionally 

exclude particular variables from an analysis until it 

comes to the wanted conclusion.

• Selection bias or sample bias: This happens when 

the sample of data used is not a good reflection of the 

population.

• Prejudice bias: Result of training data that is 

influenced by cultural or other stereotypes. For 

example, if we train an algorithm to recognize people at 

work based on images found online, a lot of them show 

men coding, for example, and women in the kitchen. 

As a result, the model will be predicting men as being 

more likely coders and women cook, which is incorrect 

and replicating biases found online.

If you are not familiar with the topic of bias in machine learning, you 

might be wondering why it is a problem.

Humans are biased in many ways; we can make unfounded 

assumptions about people or situations that can lead to discrimination. 

However, when this bias makes it into products or systems used in our 

daily lives and developed to make decisions for us and about us, this can 

have terrible widespread consequences that should not be ignored.

Let’s look at some examples.
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7.2  Examples of bias in machine learning
Over the next couple of pages, we are going to look at two examples of 

situations where biased machine learning models were used in real 

applications.

7.2.1  Gender bias
A few years ago, Google Translate made the news with translations that 

were revealing the algorithms’ gender bias. When translating some words 

from the Turkish language to English, the one pronoun “o”, which covers 

every kind of singular third person in Turkish, was translated to a gendered 

pronoun in English, resulting in the following biased results.

As you can see in the preceding image, even though the Turkish 

language did not specify a certain gender for each term, Google Translate 

guessed a particular one, resulting in stereotypes such as matching the 

word “doctor” with the pronoun “he” and the word “nurse” with “she”.

Figure 7-1. Google Translate showing biased results
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Google has now updated their algorithm to try to prevent such 

biases from happening by now displaying both feminine and masculine 

translations for a single word.

Even though this is an improvement, the fault was not necessarily on 

the algorithm itself but most likely due to the fact that the data used to 

train it probably contained biased information.

Besides, displaying both “she” and “he” pronouns does not take into 

account people who use the pronoun “they”, which should be included to 

achieve better fairness.

7.2.2  Racial bias
One of the most impactful examples of biased machine learning 

algorithm used in the past few years is with a software powered by AI 

called COMPAS.

Figure 7-2. Google Translate showing results with multiple pronouns
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This software has been used by judges in courtrooms to generate risk 

assessments and forecast which criminals are most likely to reoffend based 

on responses to 137 survey questions.

The issue with using this algorithm is that it was discovered that, when 

it was wrong about its predictions, the results were displaying differently 

for black and white offenders.

Black offenders were labelled as higher risk even though their chance 

of reoffending was lower, whereas white offenders were labelled as lower 

risk even though they had a higher probability to reoffend.

The fact that such erroneous predictions were used in the justice 

system is already a serious issue, but the scale at which it was used makes 

this even more concerning.

Considering the United States imprisons a large number of people 

each year, one can only imagine the amount of incorrect convictions.

Besides, as the company behind COMPAS, called Northpointe, 

refused to disclose the details of their algorithm, it made it impossible for 

researchers to evaluate the extent of its unfairness.

Figure 7-3. COMPAS software results
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These are only two examples of situations where bias can be 

introduced in machine learning algorithms. There are unfortunately plenty 

more and I would recommend to dive deeper into the topic.

7.3  Potential solutions
Even though bias in machine learning cannot be completely eradicated, 

there are a few options to minimize it.

7.3.1  Framing the problem
Before working on building a model and generating predictions, data 

scientists need to decide what problem they are trying to solve. It is 

already at this stage that some bias can be found. If you are building a 

model for a credit company that wants to automatically evaluate the 

“creditworthiness” of people, there are already decisions made around the 

concept what defines someone who is worthy of getting a credit that might 

embed some unfairness and discrimination.

For example, a company can decide that it wants to maximize its profit 

margins, meaning creditworthiness will be based on how rich a client is as 

they will probably contract bigger loans. Otherwise, it can also decide that 

it would rather focus on maximizing the amount of loans contracted, no 

matter if clients can afford them or not.

Overall the issue lies within the fact that these decisions are made with 

business objectives in mind, and not fairness, even though they will end 

up impacting real people in many ways.

If an algorithm predicted that the giving subprime loans was an 

effective way to maximize profit, the company would end up engaging in 

predatory behavior even if it wasn’t the direct intention.
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7.3.2  Collecting the data
This may be a more frequent example of how bias makes its way into 

machine learning models and can show up in two ways.

 Incorrect representation of reality

You may have heard of cases where collecting data that was 

unrepresentative of reality caused a machine learning model to generate 

incorrect predictions.

For example, in face recognition, if an algorithm is trained with more 

images representing people with light-skinned faces than dark-skinned faces, 

the model created will inevitably be better at recognizing light- skinned faces.

To try to prevent this kind of discrimination, analyzing the data you are 

using before feeding it to an algorithm will give you an idea of its quality 

and its potential in generating more fair predictions.

In general, if you decide to use a pre-trained model, there should be a 

link documented for you to have a look at the dataset used. If you cannot 

find it, I would request it to the company or person sharing the model.

If you are unable to verify the quality of the data, I would advise to find 

a different model.

If you found the original dataset and noticed that it was lacking 

diversity and was not a good representation of reality, you could either 

decide not to use the model trained using this data, or you could decide to 

leverage it, collect some additional, more diverse data, and apply transfer 

learning to generate a new, less biased model to use in your application.

If you take the route of collecting your own data and not rely on some 

existing model, I would advise to start by analyzing what diversity means 

in your particular case, what problem is your model going to solve, who 

will it be used on, what sources are you planning on using to collect the 

data, are these sources representative of reality, and so on.

The analysis work is essential to raise potential issues or concerns early 

and build a model that will minimize the perpetuation of biases.
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 Reflection of existing prejudices

A second issue when it comes to collecting data is in using some that 

contains existing prejudices.

Some companies use some of their internal historical data to train 

machine learning models to automate tasks.

For example, a couple of years ago in 2018, Amazon realized that their 

internal AI recruiting tool was biased against women.

They had been using data gathered for the past 10 years of job 

applications to rate new candidates from 0 to 5 stars. However, as most 

people hired to work at Amazon were males, the model had deduced that 

male candidates were preferable.

Looking at historical hiring data and analyzing thousands of resumes, 

the model’s logic was that Amazon did not like resumes with the word 

“women” in it.

As a result, any resume that was containing this word, for example, 

“Captain of the women’s team” or “Studied at a women’s college,” was 

getting a lower rating than the ones not mentioning it.

Even though this made the news in 2018, Amazon had realized its new 

system was not rating candidates in a gender-neutral way, since 2015.

A way to prevent this type of discrimination is related to the section 

earlier, analyzing the data you are using. The fact that data is internal does 

not mean it is unbiased. However, considering that this data had been 

collected over the past 10 years, we can agree that it might be too much 

data to analyze manually. I would still advise to collect a random set of 

samples and have people assess their fairness and diversity.

Besides, when using a model for a task as important as hiring, I would 

hope that some testing of the model was done before using it. Bias in hiring 

is a well-known issue and can take many forms. As a result, if you decide 

to build or use a recruitment software that relies on machine learning, 

I would advise to test it for different biases, from gender to educational 

background, to ethnicity, and so on.
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7.3.3  Data preparation
Another place where bias can be introduced is when preparing the data. 

Even if you have analyzed your data and made sure that it is diverse and 

represents the reality of the environment it is going to be used for, the 

preparation stage also needs some attention.

This phase involves selecting attributes you want your algorithm to 

consider when learning and generating predictions and can be described 

as more of an art than a science.

Often, some experimentations with attributes and parameters are 

needed to fine-tune a model.

However, you also need to make sure that reaching high accuracy does 

not also introduce bias. While the impact of experimenting with attributes 

on accuracy is measurable, its impact on bias isn’t.

In the case of the recruitment tool at Amazon, attributes could 

have been candidates’ gender, education level, years of experience, 

programming languages, geographical location, and so on.

For the purpose of hiring someone as an engineer, for example, a 

person’s gender should not matter at all so should be omitted as an 

attribute to train the model.

A person’s geographical location would only matter if the company 

cannot sponsor visas to relocate.

As a result, to maximize fairness, a model trained to rank candidates 

should take into consideration attributes impacting their skill level, 

including years of experience and programming languages.

It could also use education level, but this could introduce some bias 

toward people who have had the privilege of getting higher education.

In the technology industry, many very good developers have not taken 

the path of getting a computer science degree, so using this as an attribute 

could result in ranking people lower even though, in practice, they possess 

the right skills and would be great employees.
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Hopefully this example demonstrates how important the data 

preparation phase is, no matter if you have already spent some time 

making sure the dataset you are using is diverse.

7.3.4  Team diversity
Finally, minimizing bias in machine learning also lies in the makeup of the 

teams working on developing models.

We all have biases, and an efficient way to mitigate diversity deficits is 

in improving diversity in your teams.

You can imagine that issues found in facial recognition models would 

have been prevented if the teams working on them included more non- 

white people.

Not only would this help in testing the predictions of a model to make 

sure their accuracy is high across a diverse set of faces, it would also 

improve the overall process.

Previous phases of framing the problem, collecting, and preparing 

the data would benefit from people with different backgrounds, life 

experiences, and so on. Potential issues could be raised early and 

influence the development of a more fair model while still working toward 

high accuracy.

Not only is this an ethical challenge but also a technical one. How good 

really is a facial recognition model if it’s mostly accurate when used on 

light-skinned people? If the goal of machine learning is to develop models 

with the highest accuracy, then the real technical challenge is in high 

accuracy across a diverse set of samples.

7.4  Challenges
Unfortunately, even though the previous section stated a few of the 

potential solutions to reduce bias in machine learning, this issue is a 

difficult one to fix and will probably still be present for a while.
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In this section, we are going to go through a few challenges of 

mitigating bias.

Unknowns
It can be unclear where bias was introduced in a system. Even if you 

work with a diverse dataset, make sure to use attributes that do not alter 

the fairness of the predictions; it is sometimes difficult to understand how 

a model generated a certain result.

In the case of Amazon and its gender-biased recruiting tool, once 

they realized that the model was picking up words like “women’s” to rank 

candidates lower, they updated their model to ignore explicitly gendered 

words; however, that was not enough. They later discovered that the 

updated system was still picking up on implicitly gendered words that 

were more commonly found on men’s resumes, such as “executed” and 

“captured”, and was using this to made decisions.

Fairness is relative
Another challenge when it comes to bias in machine learning is 

around the fact that not everyone agrees on what is considered fair or 

unfair. Unfortunately, more work has been done on the technical side than 

on the ethics side of AI, so there are no real standards, regulations, and 

policies at this point when it comes to designing ethical AI applications.

Some companies like Google are sharing their principles when it 

comes to developing AI solutions that other companies can also decide to 

adopt; however, these should not be considered regulations. For example, 

so far, Google’s AI principles include the following objectives for AI 

applications:

• Be socially beneficial

• Avoid creating or reinforcing unfair bias

• Be built and tested for safety

• Be accountable to people

• Incorporate privacy design principles
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• Uphold high standards of scientific excellence

• Be made available for uses that accord with these 

principles

Even though these are a good start, we should hope that governments 

will soon provide real regulations around the development and use of 

machine learning models and how to assess their fairness, so we can hope 

to avoid the widespread implementation of biased systems.

In this chapter, we covered briefly some examples of situations where 

biased machine learning models were used and the consequences, as well 

as some possible solutions.

If you are interested in learning more about this topic, I would highly 

recommend you read the books Weapons of Math Destruction by Cathy 

O’Neil and Algorithms of Oppression by Safiya Noble, in which the authors 

cover this fascinating subject in much more depth.
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